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ABSTRACT: This paper presents a new flux and rotor resistance observer called an Extended Gopinath observer
(EGO). The design of the EGO observer is done based on an adaptive mechanism using the notion of Popov

hyperstability. The analysis of the new speed control system is released by simulation.
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1. INTRODUCTION

This paper presents a new flux and rotor resistance
observer called an Extended Gopinath observer (EGO).
The design of the EGO observer is done based on an
adaptive mechanism using the notion of Popov
hyperstability [11].

Thus, this type of observer is included in the
estimation methods based on an adaptation mechanism,
along with the Extended Luenberger Observer (ELO)
proposed by Kubota [4] and the Model Adaptive System
(MRAS) observer proposed by Schauder [3].

In the second part of the paper is presented the
analysis of the new speed control system, released by
simulation.

2. THE GOPINATH EXTENDED OBSERVER

The EGO observer in composed of a low grade
Gopinath rotoric flux observer and an adaptation
mechanism used for the rotor resistance estimation.

The equations that define the rotoric flux Gopinath
observer are [9]
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In the above relations | marked with “*” the

identified electrical sizes of the induction motor.
The block diagram of the EGO is presented in Fig 1.
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Fig.1 The Principle Schematic of the EGO Estimator

The essential element that determines the flux
observer’s stability, and also his lack of sensibility to
the motor parameters variation, is a g gate, which is a
complex number of the form: g =9, +j-g,.

In order to design this type of estimator we need to
position the estimator’s poles in the left Nyquist plane
so that the estimator’s stability is asured. The expresions

g, and g, after the pole positioning are [9]
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The optimum position of the poles, the « and g

values respectively, are obtained by the minimization of
the induction motor’s rotoric resistance variation over
the stability of the flux observer. We get the following

[9]:
p=0ia=k(o,2,) +(az) k>0 (@)

In these conditions the Gopinath rotoric flux
observer is completely determined.

Next, in order to determine the adaptation
mechanism used to estimate the rotoric resistance, we
will consider as a reference model the ,,statoric curents -
rotoric fluxes” model of the induction motor and as an
ajustable model, the model of the Gopinath rotoric flux
observer. The equations mentioned above written under
the input-state-output canonic form are:

Reference model:

ix: A-x+B-u
' ()
dt
Ajustable model:
%R:A-Q+%-X+B-u+@-(y—9)
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In the above relations we marked with ,~” the
Gopinath estimator’s matrices which are dependent
upon the rotoric resistance, which in turn needs to be
estimated based on the adaptation mechanism

Next, in order to determine the expresion that
defines the adaptation mechanism we will asume that
the identified electric sizes are identical with the real
electric sizes of the induction motor. In other words:

a; =a;;i,j=12 and b, =b;
In order to build the adaptive mechanism, for start

we will calculate the estimation error given by the
difference:
ey =X—X (6)
Derivation the relation (6) in relation with time and
by using the relations (4) and (5) the relation (6)
becomes:
d
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If the determinant det(l2 +@~C)¢O then it exists

-1
a unique inverse matrix M =(I2+@-C) so that the

expression (7) can be written like this:
d ~
=M (A-Ri)ex+M-(A-A-]R)-x (8

Equation (8) describes a linear system defined by the
term M -(A—Eu)ex in inverse connection with a non

linear system defined by the term ®(e,) which

receives at input the error e =C-e, between th e2
models and has at the output the term:
p:—M-(A—i\l—i\)-Q 9)

The block diagram of the system that describes the
dynamic evolution of the error between the state of the
reference model and the state of the adjustable model is
presented in Fig. 2.

Fig. 2 The block diagram of the system (7)

As one may notice, this problem is frequently treated
in the literature of the non-linear systems, being exactly
the configuration of the Lure problem, and of one of the
problems treated by Popov.

Considering, according to the Popov terminology,

the non-linear block described by (D(ey) the integral

input- output index associated to it is:

n(tt) =Re| e} (t)-p(t)ct |

In order for block to be hyper-stable a necessary
condition is:

7(04)=Re[ [e] (1) p(t)dt|2—7*(0) )
for any input-output combination and where 7(0) isa

positive constant.
In the above relation we marked with e; the

following expression:

e, :[ey OJ (12)
obtained in order to keep the compatibility between the
input and output dimensions, and ey represents the
conjugate of the complex variable e, .

Under these circumstances, using the relation (9) the
expression (11) becomes:

q(o,tl)z—ReU;e; (t)-M -(A—A—i\)&dt}g—ﬁ (0)(13)

(10)



Next we asume that the error M -(A—@q—@) is

determined only by the rotor resistance estimation of the
induction machine. In this case we may write:

M-(A-A-A)=(R -R)-A, (14)
1o
where: A, _ 1 @ am :
L L, +1_—-g —(1+g-a14)
5 9 9

For any positive derivable f function we can
demonstrate the foIIowing inequality:

K, j[( jdt> Ky

Sr(0)

On the other hand, using the relation (14), the
expression (13) becomes:

n(o,tl)=—Re{j;[e; (t)A,.i.(R,-ﬁr)}dt}z-ﬁ(o) (16)

By combining the relations (15) and (16) we can
write the following relations:

(15)
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Because K, is a constant and then, in case of a

slower R, parameter variation related to the adaptive
law, we can write:

Re =k -[Re(e] - A, -X)dt (18)

After replacing the variables that define the above

expression (18) and taking into account the arbitrary
nature of the K; positive constant we obtain:

=k, - j[ o (VoL i) e -(@q,—Lm-?qs)}dt (19)

where e, =i i and €y =l —gs.
Sometimes, insted of the adaptation law (19) we can
use the following form:

R =K, -{eyd -(@dr -L, ~?ds)+eyq -(@qr -L, s )}+
+k; 'J[eyd '(gdr -L, 'ids)“'eyq '(gqr |q5)} dt

From the above relation we ca observe that a new
proportional component apears from the desire to have 2
coefficients that can control the speed estimation
dynamics. This fact isn’t always necesary because we
can obtain very good results by using only expresion
(19). Thus expresion (20) represents the general formula
of the adaptation mechanism where K represents the

proportionality constant and K, = K, /T,; where T,

represents the integration time of the proportional-
integral controller that defines the adaptation
mechanism.

(20)

3. THE MATHEMATICAL DESCRIPTION OF
THE VECTOR CONTROL SYSTEM

The block diagram of the control system of the
mechanical angular speed @, of the induction motor
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with a discreet orientaion after the rotoric flux (DFOC)
is presented in Fig. 3.
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Fig. 3 The block diagram of the vector control
system which contains an EGO loop.

In Fig. 3 we marked with B2 the control block of the
speed control system with direct orientation after the
rotoric flux (DFCO) and with B1 the extended Gopinath
estimator block (EGO).

In order to mathematically describe the DFOC
control system the following hypotheses have been
considered:

e The static frequency converter (CSF) is assumed to
contain a tension inverter.

e The static frequency converter is considered ideal so
that the vector of the command measures is
considered to be the entry vector of the induction
motor.

e The dynamic measure transducers are considered
ideal.

The mathematical model of the wvector control
system will be written in an dA, —qA4, axis reference

bounded to the stator current.

Some of the equations that define the vector control
system are given by the elements which compose the
field orientation block and consist of:

e stator voltage decoupling block (C,Uy):

1 R i
U: :hfl'l:bl*l'vusir_aﬁ"//r_agl';z Z @ IW}

(21)
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e Pl flux controller (PI_y) defined by the K,
proportionality constant and the T,
dx .

d_t6:l//r _ll//rl
(22)

K
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v

integration time:

e torque Pl controller (PI_M,) defined by the K,,

proportionality constant and the T, integration
time:
%ZM:_MQ
. (23)
i, :T—M-x7+KM (M7 =M,)
M



e mechanical angular speed Pl controller (P1_W)
defined by the K proportionality constant and the
T, integration time:
dx, .

dt

@y

o —
(24)
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e current Pl controller (PI_I) defined by the K,
proportionality constant and the T, integration time:

M. =

e

B e |
7 lasa, T ldsa,
dt (25)
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e Flux analyzer (AF):
2 2
|‘//r| = \/er +$qr
B B (27)
sin4, =—-;cos 4, =2
|| v |
e The calculate of the torque block (C;M,):
M, =K, v, | i, (28)

The other equations that define the mathematic
model of the speed’s vectorial control system are:

e The equations that define the stator currents — rotor
fluxes mathematical model of the induction motor; 4
equations defined based on the first relation in the
canonic system (4) to which we can add the
induction machine’s motion equation defined by the
following expression:

d . .
a r:Km'[Wdr'Iqs_V/qr'ldsJ_sz'a)r_ng'Mr (29)
z
where Km1 :E._p.L_m;K :E; K :3_

23 L™ 3
The equations that define the extended Gopinath
observer defined by the 4 relations that can be written
based on system (1) with the equation that defines the
speed adaptation mechanism (20). Expresion (20) can
also be written like below:

%xﬁ =6y~ Ly |6, (g~ Ly i)

hf :i_:'Xﬁ-I-KR '[eyd '(&dr -L, 'ids)'l'eyq '(gqf Ly 'iqs)}

All these expressions form a 15 differential
equations system with 15 unknown values. In order to
offer a coerent presentation of this differential equations
system, we have used the following notations:

The state vector of the control system will be

X:[Xi]izl,Ts

(30)

(31)
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where: x, = ids)T X = iqs;1 X =W X =W
Xg =0 Xy = idsie 0 X = iqsie ; X13 :;drﬁe v Xy = quE '
The input vector of the of the control system will be

T
u=[u, u, u] (32)
where U, =y, ; U,=a, ; U; =M, .

Under these circumstances the 15 differential
equations system that define the mathematical model of
the vector control system can be written as follows

d
i f(x,u) (33)

and the f, = f(xu)

i=115

where f(x,u) =[f,(x,u)]

functions are:

fl(xxu):a11'xl+a’e'X2+313'X3+a14'zp'X5'X4+b11'ua(34)
fz(x,u):—a)e-x1+au»x2—a14-zp-x5~x3+a13~x4+bu»ub (35)

fs(x,u):a31-x1+a33-x3+(a)e—zp~x5)-x4 (36)

f4(x,u):a31-x2—(a)e—zp~x5)-x3+a33-x4 (37)

fo(xU) = K o[X %, =X, - % |- K, % =K -u; (38)

fe (X,U) =u,—-0, (39)
K
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fa(x,u)=u, -0, (41)
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Under these circumstances the mathematical model
of the speed vector control system is fully determined as
being defined by the non-linear differential equations
system given by (33) whose initial condition

isx(0)=0.
4, CONTROL SYSTEM ANALYSIS

In order to accomplish the above mentioned control
system analysis, we shall consider an induction motor
with a short-circuited rotor having the following
electrical and mechanical parameters:

o eclectrical parameters

R, =0.371[Q]; R, =0.415[Q]; L, =0.08694 [H];

L, =0.08762[H]; L, =0.08422[H].

e mechanical parameters

z,=2; 3=015kg-m*; F:0.005[

N~m~s}
rad

On the other hand, following the controllers tuning
within the speed control system the following constants
have been obtained:

K, =501.3834; T =—*—;
Y v 2374.7
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K

K;=5.9881; T, =——'—;
754.4176
K, =10.1988; T, Ky
1020
K(uzlo;Tsz"’;KR=6;TR: Ke .
350 4000
In the relations above, K, represents the

proportionality constant and T, represents the

integration time of the Pl control from the speed
estimator designed based on the Popov hyperstability.

Next, the performances of the extended Gopinath
estimator are presented in a variety of functional
conditions.

Thus the image below will present the graphics for
the real and estimated rotors fluxes and also the
graphics for the imposed speed, real speed and the
estimated speed for small, medium and large imposed
speeds.
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Fig. 4 w,, real flux compared to the W, estimated

flux: o —5—{@} 0.
30| s

Fig. 5 @, real speed compared to the o, estimated
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Fig. 6 @, real speed compared to the o estimated

speed and reference speed: o, :1500-37;{rad} M, =0
S

Fig. 7 y,, real flux compared to the Qrdr estimated

flux: o, :3000-77{@} ‘M, =0
0L s

Fig. 8 @, real speed compared to the o estimated

speed and reference speed: o, :3000~3”0{rad} M, =0.
S

5. CONCLUSIONS

This paper presents a new flux and rotor resistance
observer called an Extended Gopinath Observer (EGO).
The design of the EGO observer is done based on an
adaptive mechanism using the notion of Popov
hyperstability.

The EGO observer designing using the method
presented in this paper ensures the control system with a
very good dynamics and robustness. This net avantage,
recomend the succesful use of this method in practice.
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