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Teza de doctorat cu titlul ’Cercetari privind recunoasterea automatd a macro- si
microexpresiilor faciale utilizind metode de inteligenta artificiala” abordeaza un domeniu
de cercetare interdisciplinar aflat la intersectia dintre psihologie, neurostiinte si inteligenta
artificiala.

Expresiile faciale sunt expresii universale ale emotiilor umane si care joaca un rol
fundamental Tn comunicarea nonverbald. Dezvoltarea sistemelor capabile sa recunoasca si
s interpreteze aceste expresii in mod automat are implicatii majore in domenii precum
interactiunea om-calculator, securitate, educatie si sanatate.

Dezvoltarea tehnologiilor de recunoastere a expresiilor faciale s-a accelerat
considerabil 1n ultimii ani, fiind sustinuta de progresele din domeniile inteligentei artificiale,
invatarii profunde si viziunii computerizate.

Cu toate acestea, domeniul se confrunta inca cu provocari majore, in ceea ce priveste
detectarea si interpretarea precisa a macroexpresiilor (manifestari emotionale evidente, cu
intensitate ridicata si duratd mai lungd), cat si in recunoasterea microexpresiilor (manifestari
discrete si tranzitorii care apar pentru perioade extrem de scurte si care pot dezvalui emotii
ascunse sau suprimate).

Teza de doctorat urmareste fluxul natural al procesului de cercetare stiintifica,
progresand metodic de la fundamentele teoretice, prin metodologia aplicata si experimentele
desfasurate, pana la rezultatele obtinute si concluziile finale. Organizarea tezei reflectd atat
complexitatea domeniului abordat, cat si metodologia riguroasd aplicatd pentru atingerea
obiectivelor propuse.

Obiective principale urmarite:

a. Valorificarea simetriei si abordarea asimetriei in expresiile faciale pentru
imbunatatirea performantei algoritmilor de recunoastere a emotiilor.

b. Dezvoltarea si validarea unui model CNN personalizat in timp real pentru
recunoasterea eficientd a emotiilor faciale, adaptat pentru a gestiona variabilitatea si
asimetria expresiilor.

c. Dezvoltarea unui cadru teoretic comprehensiv pentru recunoasterea faciald,
integrand teoria psihologica a expresiilor faciale (FACS) cu abordarile tehnologice moderne.

d. Implementarea unui sistem robust pentru detectarea si clasificarea microexpresiilor
faciale in timp real, combindnd tehnici traditionale de computer vision cu algoritmi avansati
de machine learning.

e. Rezolvarea problemelor specifice de confuzie intre emotiile similare prin reguli
expert si amplificarea caracteristicilor distinctive.

f. Evaluarea riguroasa a performantei sistemelor dezvoltate utilizdnd metrici standard
si compararea cu metodele existente.

1. Introducere
Teza debuteazd cu un capitol introductiv care stabileste cadrul conceptual si
metodologic al cercetdrii. Acesta prezintd contextul stiintific actual in domeniul
recunoasterii expresiilor faciale, subliniind importanta si actualitatea temei in era digitald
contemporand. Sunt evidentiate provocarile majore cu care se confrunta cercetatorii in acest

6



domeniu, de la variabilitatea expresiilor faciale in functie de factorii culturali si individuali,
pana la dificultatile tehnice legate de achizitia si procesarea imaginilor faciale In conditii
reale. Motivatia care std la baza acestei cercetari este prezentatd In detaliu, subliniind
potentialul aplicativ vast al sistemelor automate de recunoastere a expresiilor faciale in
domenii precum sdnitatea mentald, securitatea, educatia si interactiunea om-calculator. O
atentie deosebitd este acordata distinctiei intre macroexpresii §i microexpresii. Aceastd
distinctie fundamentald constituie una dintre contributiile originale ale cercetarii, prin
propunerea unor abordari diferentiate pentru cele doua tipuri de expresii.

Prima abordare vizeaza recunoasterea macroexpresiilor faciale prin propunerea unui
model bazat pe retele neuronale convolutionale cu accent pe evaluarea impactului tehnicilor
de augmentare a datelor, folosind setul de date FER-2013 si implementarea modelului in
timp real.

A doua abordare consta intr-un sistem hibrid dedicat analizei microexpresiilor faciale,
care integreaza tehnici avansate de computer vision, reguli expert fundamentate pe sistemul
FACS si algoritmi de inteligenta artificiald. Acest sistem a fost implementat in timp real si
testat pe bazele de date CASME II si SAMM.

Intrebarile de cercetare care ghideaza intregul demers stiintific, Sunt formulate in mod
clar si explicit stabilind astfel directiile principale de investigatie si criteriile de evaluare a
rezultatelor.

Cercetarea a fost ghidatd de urmatoarele intrebari fundamentale:

1. Care sunt cele mai eficiente tehnici si algoritmi pentru recunoasterea facialad si
detectia emotiilor in diverse contexte si conditii?

2. Cum poate fi valorificatd si abordatd simetria faciald pentru a Tmbunatati
performanta sistemelor de recunoastere a emotiilor?

3. Cum pot fi optimizate retelele neuronale convolutionale pentru a gestiona eficient
provocdrile specifice recunoasterii emotiilor faciale, ludnd in considerare dezechilibrul intre
clase si variabilitatea expresiilor?

4. In ce masura poate o abordare hibridi, combinand tehnici avansate de computer
vision, reguli expert bazate pe sistemul Facial Action Coding System (FACS) si algoritmi
de inteligenta artificiald, sa Tmbunatdteasca detectia microexpresiilor faciale?

5. Care sunt cele mai eficiente strategii pentru diferentierea intre emotii similare din
punct de vedere al expresiilor faciale?

2. Stadiul actual al cercetarii

Acest capitol oferd o analizd comprehensiva si criticd a literaturii de specialitate,
evidentiind evolutia metodelor si tehnicilor de recunoastere a expresiilor faciale de-a lungul
timpului. Acesta incepe cu o incursiune istoricd in dezvoltarea teoriilor emotiilor si a
expresiilor faciale, pornind de la lucrarile fundamentale ale lui Charles Darwin si Paul
Ekman, care au stabilit baza conceptuald a universalitatii anumitor expresii emotionale. Sunt
prezentate metodele traditionale de recunoastere a expresiilor faciale, bazate pe extragerea
manuald a trasaturilor si utilizarea clasificatorilor clasici. Evolutia cronologicd a domeniului
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este urmaritd prin prezentarea trecerii spre abordarile bazate pe invétare automatd, cu accent
pe aparitia si dezvoltarea retelelor neuronale convolutionale (CNN) care au revolutionat
domeniul recunoasterii vizuale a patternurilor. Sunt analizate comparativ diverse arhitecturi
CNN care au fost aplicate cu succes In domeniul recunoasterii expresiilor faciale, precum
VGG, ResNet, Inception si EfficientNet, evidentiind avantajele si limitarile fiecareia.

O sectiune substantiald este dedicatd metodelor specializate pentru detectarea si
recunoasterea microexpresiilor. Sunt prezentate tehnicile de analiza a miscarii bazate pe flux
optic, magnification video si analiza temporald a schimbarilor faciale, care sunt esentiale
pentru captarea microexpresiilor.

Capitolul include, de asemenea, o analiza a sistemelor hibride care combina diverse
abordari pentru imbunatatirea performantelor de recunoastere, precum si a potentialului
modelelor LLM in interpretarea contextului emotional. Analiza literaturii de specialitate se
incheie cu identificarea clard a limitarilor actuale ale sistemelor existente, creiand astfel
premisele pentru contributiile originale propuse in cadrul tezei.

3. Seturi de date si resurse

Baza de date FER2013 (Facial Emotion Recognition 2013) este analizata in detaliu,
fiind alcatuitd din peste 35.000 de imagini faciale in nunate de gri, distribuite n sapte
categorii emotionale: fericire, tristete, frica, furie, dezgust, surpriza si neutralitate. Sunt
discutate avantajele acestei baze de date, cum ar fi volumul mare de imagini si diversitatea
conditiilor de captare, dar si limitarile sale legate de dezechilibrul intre clase si rezolutia
relativ scazuta a imaginilor.

Pentru studiul microexpresiilor, sunt prezentate douda baze de date specializate:
CASME 1I (Chinese Academy of Sciences Micro-Expression Database II) si SAMM
(Spontaneous Actions and Micro-Movements). CASME II este o colectie de 255 de
microexpresii capturate la o rata ridicata de cadre pe secunda (200 fps), clasificate in cinci
clase emotionale principale, in timp ce SAMM ofera 159 de microexpresii capturate la 200
fps, cu o diversitate demografici mai mare. In Capitolul continua cu descrierea detaliati a
instrumentelor software si hardware folosite pentru dezvoltarea sistemului propus. Sunt
prezentate bibliotecile Python specializate pentru procesarea imaginilor si invatare profunda,
cum ar fi OpenCV pentru manipularea imaginilor, TensorFlow si Keras pentru
implementarea retelelor neuronale, MediaPipe pentru detectarea si urmarirea punctelor de
reper faciale, precum si tehnologiile OpenAl pentru aspectele legate de integrarea modelelor
lingvistice. Specificatiile hardware utilizate pentru antrenarea si testarea modelelor sunt, de
asemenea, detaliate, subliniind importanta resurselor computationale adecvate pentru
procesarea eficientd a algoritmilor de invatare profunda.

Nu 1n ultimul rand este prezentatd configuratia hardware utilizata. Un sistem de calul
cu un procesor Intel Core 17-10700K, 32GB de RAM DDR4, SSD 1TB si o placa NVIDIA
GeForce RTX 3080, 10GB RAM.



4. Metodologia cercetarii

Constituie nucleul conceptual al tezei de doctorat, detaliind arhitecturile generale a
sistemului de identificare a emotiilor dezvoltate. Capitolul incepe cu prezentarea cadrului
metodologic general, bazat pe principiile invatarii profunde si pe analiza morfologica a
expresiilor faciale. Este explicatd abordarea diferentiatd adoptatd pentru macroexpresii si
microexpresii, justificatd prin natura distinctd a acestor doud tipuri de manifestari
emotionale.

Pentru macroexpresii, este prezentata in detaliu arhitectura modelului bazat pe retele
neuronale convolutionale (CNN), incepand cu structura straturilor convolutionale, functiile
de activare utilizate si mecanismele implementate pentru prevenirea overfitting-ului. Sunt
explicate motivatiile din spatele fiecarei decizii arhitecturale, cum ar fi alegerea dimensiunii
filtrelor, a strategiilor de pooling si a organizarii straturilor dense finale. O atentie deosebita
este acordatd metodelor de preprocesare a imaginilor faciale, care includ detectarea fetei,
normalizarea si augmentarea datelor.

Pentru sistemul dedicat microexpresiilor, este prezentatd arhitectura hibrida
dezvoltata, care combind analiza temporald a secventelor video cu extragerea trasaturilor
spatiale. Sunt detaliate tehnicile utilizate pentru amplificarea miscarilor subtile ale muschilor
faciali, precum si metodele de analizdi pentru captarea dinamicii temporale a
microexpresiilor. O contributie semnificativa prezentatd in acest capitol este procesul de
integrare a modelelor lingvistice de mari dimensiuni (LLM), specific GPT-3.5-turbo, in
fluxul de procesare pentru gestionarea situatiilor ambigue 1n care clasificarea bazata pe
reguli nu oferd o decizie concludentd. Acest proces implicd generarea automatd a unui
prompt structurat incluzand lista unitatilor de actiune detectate, regulile explicite de
clasificare si informatii contextuale; procesarea promptului de citre modelul LLM; validarea
raspunsului prin verificarea conformitatii cu regulile si constrangerile definite In sistem; si
aplicarea regulilor de corectie si filtrare pentru eventualele rdspunsuri eronate sau
inconsistente.

Capitolul include, de asemenea, descrierea algoritmilor de segmentare faciald
utilizati pentru izolarea regiunilor de interes relevante pentru expresiile emotionale,
implementarea modulelor de analizd a asimetriei faciale, metodologia de antrenare a
modelelor, incluzand strategiile de optimizare, functiile de pierdere utilizate, tehnicile de
ajustare a hiperparametrilor si metricile de evaluare utilizate ( matricea de confuzie, precizia,
recall-ul si scorul F1).

5. Experimente

Partea experimentald a tezeide doctorat detaliaza protocoalele de testare si evaluare a
modelelor propuse. Capitolul debuteaza cu prezentarea metodologiei experimentale
generale, accentuand importanta validarii incrucisate in vederea obtinerii unor estimari
robuste si fiabile ale performantei sistemului propus. In cadrul studiului au fost realizate sase



experimente distincte, orientate spre analiza eficientei retelei neuronale convolutionale
(CNN) in recunoasterea macroexpresiilor faciale si testate pe baza de date FER2013. Fiecare
experiment a testat o configuratie diferitd a procesului de antrenare:
e Cazul 1: Reteaua CNN a fost antrenatd utilizand functia Shuffle.
e Cazul 2: Reteaua CNN a fost antrenata utilizdnd functia Shuffle si functia Flip
Vertical.
e Cazul 3: Reteaua CNN a fost antrenatd utilizand functia Loss Weight.
e Cazul 4: Reteaua CNN a fost antrenatd utilizdnd functia Shuffle si functia Loss
Weight.
e C(Cazul 5: Reteaua CNN a fost antrenatd utilizand o configuratie complexa, care a
integrat simultan functiile Flip Vertical, Shuffle si Loss Weight.
e Cazul 6: Reteaua CNN a fost antrenata utilizand functia Shuffle, insa s-a introdus o
modificare suplimentara prin cresterea dimensiunii lotului de testare.

Procesul de antrenare a retelei neuronale convolutionale (CNN) este descris 1n detaliu,
incluzand strategiile de initializare a ponderilor, algoritmii de optimizare utilizati precum si
tehnicile de normalizare a datelor. Aceste elemente au fost esentiale pentru a preveni
suprainvatarea si pentru a asigura o generalizare eficientd a modelului. De asemenea, sunt
prezentate modalitatile de ajustare a hiperparametrilor, precum rata de invatare, dimensiunea
lotului (batch size) si numarul de epoch.

De asemenea, a fost descrisda implementarea in timp real a modelului CNN propus,
pentru a evalua capacitatea acestuia de a functiona eficient intr-un mediu aplicativ.

Pentru experimentele cu microexpresii sunt detaliate procedurile de extractie a
secventelor relevante din inregistrarile video, sincronizarea cadrelor si tehnicile de
amplificare applicate.

Testarea sistemului hibrid s-a realizat pe bazele de date CASME 1II si SAMM si a
urmarit :

e Acuratetea detectiei unitatilor de actiune faciald in raport cu adnotérile manuale din
bazele de date;

e Eficienta regulilor expert in clasificarea microexpresiilor;

e Eficacitdtii integrarii modelului LLM in rezolvarea cazurilor ambigue;

e Performanta globald a sistemului hibrid in conditii de functionare in timp real.

6. Rezultate si analiza rezultatelor

Rezultatele obtinute in urma experimentelor sunt analizate riguros si performantele
modelelor propuse sunt interpretate utilizand o serie de metrici standardizate precum
matricea de confuzie acuratetea globala, precizia, sensibilitatea (recall) si scorul F1.

Capitolul este structurat in doud sectiuni principale: analiza performantei modelului
CNN propus si analiza performantei modelului hibrid propus.
Prima sectiune evalueazd performanta retelei neuronale convolutionale (CNN) propuse
pentru clasificarea macroexpresiilor faciale. Modelul a fost testat in sase configuratii
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experimentale diferite, utilizdnd diverse strategii de augmentare a datelor descries In
capitolul anterior. Acuratetea globalda a modelului este de 92%.

Matricile de confuzie generate pentru cele sase cazuri experimentale au evidentiat
performante ridicate ale modelului propus pe fiecare clasa de emotie. Sunt evidentiate clasele
emotionale care prezinta confuzii frecvente, cum ar fi frica si surprins sau tristete si neutru
(lipsa starii emotionale).

Analiza preciziei pe fiecare clasd emotionald a relevat (Tabelul 6.1): performanta
ridicata pentru emotiile distincte precum fericirea (>90%), precizie bund pentru clasa de
emotii neutru si surprins (>75%), provocari in clasificarea precisd a emotiilor similare
precum frica si tristetea si influenta semnificativa a tehnicilor de augmentare asupra preciziei
pentru anumite clase emotionale.

Tabel 6.1 Precizia (%) pe fiecare emotie in cele 6 cazuri

Emotie Cazul 1 Cazul 2 Cazul 3 Cazul 4 Cazul 5 Cazul 6
furie 0.88 0.88 0.88 0.89 0.88 0.90
dispret 0.95 0.99 0.97 0.84 0.94 0.98
frica 0.89 0.92 0.89 0.90 0.90 0.85
fericire 0.96 0.94 0.95 0.96 0.95 0.94
neutru 0.88 0.89 0.91 0.87 0.87 0.87
tristete 0.88 0.89 0.88 0.87 0.89 0.86
surprinza | 0.95 0.95 0.92 0.95 0.93 0.87

Analiza recall-ului pe fiecare clasa emotionala a aratat (tabelul 6.2): recall ridicat
pentru fericire si expresii neuter, valori moderate pentru surprins si furie, provocari in
detectarea completd a instantelor de frica si dispret, variatii semnificative ale recall-ului n
functie de tehnicile de augmentare utilizate.

Tabel 6.2 Recall pe fiecare emotie in cele 6 cazuri

Emotie Cazul | Cazul | Cazul3 | Cazul | Cazul | Cazul 6
1 2 4 5
furie 0.86 0.88 0.89 0.89 0.88 0.92
dispret 0.87 0.88 0.86 0.89 0.88 0.90
frica 0.88 0.88 0.90 0.88 0.87 0.82
fericire 0.95 0.96 0.94 0.94 0.94 0.95
neutru 0.93 0.91 0.91 0.92 0.93 0.89
tristete 0.88 0.88 0.88 0.88 0.86 0.82
surprinza 0.94 0.95 0.94 0.94 0.94 0.88
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Scorul F1 a oferit o perspectiva echilibratd asupra performantei modelului (Tabelul
6.3): scoruri F1 ridicate pentru fericire (>85%), valori bune pentru clasa de emotii neutru si
surprins, scoruri moderate pentru furie si valori mai scazute pentru frica si dispret.

Tabel 6.3 Scor FI pe fiecare emotie in cele 6 cazuri

Emotie Cazul 1 Cazul 2 Cazul 3 Cazul 4 Cazul 5 Cazul 6
Furie 0.88 0.88 0.89 0.89 0.88 0.91
Dispret 0.91 0.93 0.91 0.92 0.91 0.94
Frica 0.88 0.90 0.89 0.89 0.89 0.83
Fericire 0.96 0.95 0.95 0.95 0.94 0.94
Neutru 0.90 0.90 0.91 0.89 0.90 0.88
Tristete 0.88 0.89 0.88 0.87 0.88 0.84
Uimire 0.94 0.95 0.93 0.94 0.94 0.87

Un aspect semnificativ al rezultatelor este reprezentat de consistenta scorurilor F1 in
toate cele sase configuratii experimentale, ceea ce reflectd stabilitatea operationald a
modelului in fata variabilitatii externe.

Implementarea 1n timp real a modelului CNN a demonstrat capacitatea sistemului de
a functiona eficient in conditii practice, cu o ratd de procesare de peste 25 de cadre pe
secunda.

A doua sectiune evalueaza performanta modelului hibrid propus pentru microexpresii.
La testarea pe baza de date CASME II precizia obtinuta a fost de 93,3% , iar pe SAMM
98,4%. Testarea modelului hibrid a evidentiat eficienta mecanismului de integrare LLM 1n
rezolvarea cazurilor ambigue, si robustetea clasificarii in fata variabilitatii expresiilor intre
subiecti diferiti. Sunt evaluate dificultatile particulare Intdmpinate In detectarea diferitelor
tipuri de microexpresii, corelandu-le cu aspecte fiziologice ale muschilor faciali implicati.
Rezultatele obtinute in urma implementdrii in timp real au validat robustetea si
aplicabilitatea practicd a sistemului propus

Capitolul abordeaza, de asemenea, efectele dezechilibrelor de clasd asupra
performantelor de recunoastere. Sunt analizate in detaliu cazurile de confuzie emotionala,
corelandu-le cu teoriile psihologice privind similaritatile si suprapunerile intre anumite
expresii emotionale, precum si cu limitdrile inerente ale reprezentarilor vizuale pentru
captarea Intregului spectru emotional uman.

7. Discutii

Discutiile integrate in acest capitol plaseaza rezultatele obtinute in contextul mai larg al
literaturii de specialitate, evidentiind contributiile originale ale tezei de doctorat.
Principalele puncte forte ale modelului CNN propus pentru macroexpresii sunt:

e Valorificarea optima a simetriei faciale pentru Tmbunatétirea clasificarii

e Tehnicile de augmentare a datelor au avut un impact semnificativ asupra robustetii

modelului, reducand supraantrenarea si imbunatatind capacitatea de generalizare a
modelului propus.
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e Eficienta computationald - modelul atinge un echilibru intre complexitate si
performanta, fiind optimizat pentru utilizare in timp real

e Robustetea in fata variatiilor - capacitatea de a gestiona variatii de iluminare,
pozitionare si expresivitate individuald

e Acuratetea clasificarii - performante competitive (aproximativ 90-91%) pe setul
FER2013, in comparatie cu alte modele din literatura de specialitate

e Implementarea practica - functionalitate demonstrata in conditii de operare in timp
real

Sistemul hibrid propus pentru detectia microexpresiilor reprezintd o contributie
semnificativa in domeniu, oferind:

e O abordare modulard care imbunatateste transparenta si controlul asupra fluxului
decizional
gestionarea claselor minoritare si a expresiilor rare sau atipice

e Rezolvarea eficienta a ambiguitétilor intre emotii similare (ex. fricd-surprins sau
tristete-dispret)

e Integrarea inovatoare a modelelor LLM pentru Imbunatatirea procesului decizional
abordarea hibrida care combind detectia automata a unitdtilor de actiune (AU) cu
clasificarea realizata prin intermediul unui model LLM (GPT-3.5-turbo)

e Performante superioare — precizie de 93.3 pe baza de date CASME Il si de 98,46%
pe baza de date SAMM, reprezentdnd un avans semnificativ fatd de metodele
traditionale

8. Limitari si directii viitoare de cercetare

Se prezintd o analiza critica a limitarilor identificate in cadrul modelelor dezvoltate
si se propun directii de cercetare.

In ceea ce priveste modelul CNN propus pentru recunoasterea macroexpresiilor,
principalele limitari identificate includ:

eUtilizarea setului de date FER2013 care prezintd un dezechilibru intre clase,
afecteaza performanta modelului in recunoasterea emotiilor minim reprezentate, cum ar fi
dispretul si uimirea.

e Dependenta de imaginile 1n tonuri de gri limiteaza aplicabilitatea modelului in timp
real, unde datele sunt colorate si pot include variatii naturale de lumina si contrast.

eTestarea pe un numar limitat de subiecti poate limita generalizarea modelului la o
populatie mai larga si diversa din punct de vedere cultural si demografic.

e Sensibilitatea la variatiile de iluminare si pozitie a fetei ramane o provocare, in pofida
tehnicilor de augmentare implementate, putand influenta negativ performanta sistemului in
contexte necontrolate.

In ceea ce priveste sistemul hibrid pentru recunoasterea microexpresiilor, limitirile
principale includ:
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e Dependenta de calitatea detectiei initiale a unitatilor de actiune poate afecta intregul
pipeline de clasificare, introducand erori care se propaga in sistem.

e Variabilitatea culturala si demografica in exprimarea microexpresiilor nu a fost pe
deplin testata iTn modelul actual, ceea ce poate limita aplicabilitatea sa universala.

e Necesitatea resurselor computationale semnificative pentru rularea modelului hibrid
poate reprezenta o bariera pentru implementarea in dispozitive cu resurse limitate
sau in aplicatii care necesitd procesare edge computing.

e Provocidrile etice si de confidentialitate asociate cu recunoasterea emotiilor in timp
real raman aspecte importante care necesitd o abordare responsabila in dezvoltarea
si implementarea sistemelor bazate pe aceste tehnologii.

Principalele directii de dezvoltare viitoare ca urmare a analizdrii rezultatelor obtinute
si a limitarilor identificate in cadrul studiului sunt:

e Sisteme multi-modale care combina analiza expresiilor faciale cu alte modalitati
precum (voce, gesturi)

e Arhitecturi adaptative personalizate pentru utilizatori individuali, capabile sa se
adapteze la specificul expresiv al fiecarui individ, prin tehnici de calibrare si transfer
learning

e Sisteme explicabile si transparente (XAI) pentru interpretarea deciziilor modelelor

e Abordari contextuale care integreaza factori situationali In recunoasterea emotiilor

e Extensii pentru aplicatii specifice in educatie, sandtate si Securitate

e Explorarea implicatiilor etice.

9. Concluzii generale

Acest capitol sintetizeaza principalele contributii si realizdri ale tezei de doctorat,
oferind o perspectivd integratd asupra implicatiilor teoretice si practice. Sunt recapitulate
obiectivele initiale si modul in care acestea au fost indeplinite prin metodologia propusa si
rezultatele obtinute.

Primul obiectiv al cercetarii a vizat explorarea modului in care simetria faciala poate
fi valorificata pentru imbunatatirea performantei algoritmilor de recunoastere a emotiilor. S-
a demonstrat cd simetria faciald joaca un rol important in recunoasterea corectd a emotiilor,
iar asimetria — fie cea naturala, fie cea indusa de factori emotionali — poate afecta
semnificativ acuratetea clasificarii.

Aceste tehnici au contribuit la o interpretare mai nuantatd si precisd a emotiilor
exprimate, ducand la o Tmbunatatire semnificativd a acuratetei algoritmilor de recunoastere,
care a atins 92%.

Al doilea obiectiv a vizat dezvoltarea si validarea unui model CNN capabil sa
functioneze in timp real si sa gestioneze eficient variabilitatea si asimetria expresiilor faciale.
Acest obiectiv a fost indeplinit prin proiectarea si implementarea unei arhitecturi CNN
personalizate, optimizatd pentru recunoasterea emotiilor faciale in conditii diverse de
iluminare, unghi si variabilitate individuala.
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Implementarea acestui model a confirmat eficacitatea abordarii propuse, subliniind
potentialul sdu pentru aplicatii in timp real in domenii precum interactiunea om-computer,
securitate sau analizd comportamentala.

Al treilea obiectiv a vizat elaborarea unui cadru teoretic comprehensiv care sa
integreze teoriile psihologice ale expresiilor faciale cu abordarile tehnologice moderne.
Acest obiectiv a fost realizat prin dezvoltarea unei baze conceptuale solide care combina
sistemul FACS (Facial Action Coding System) cu tehnicile avansate din domeniul machine
learning si computer vision.

Aceastd integrare a permis o abordare mai holisticd in studierea expresiilor faciale,
facilitand atat analizarea emotiilor, cat si dezvoltarea algoritmilor capabili sd interpreteze
aceste expresii in mod eficient si nuantat.

Al patrulea obiectiv a vizat implementarea unui sistem robust pentru detectarea si
clasificarea microexpresiilor faciale in timp real. Acest obiectiv a fost indeplinit prin
dezvoltarea sistemului hibrid care combina tehnici traditionale de computer vision cu
algoritmi avansati de machine learning si inteligenta artificiala.

Acest sistem nu doar ca faciliteaza o detectare rapida a emotiilor discrete, dar asigura
si o clasificare precisa in timp real, oferind aplicatii promititoare in domenii precum
psihologie si securitate.

Al cincilea obiectiv a vizat abordarea problemelor specifice de confuzie intre emotii
similare prin implementarea unor reguli expert si amplificarea caracteristicilor distinctive.
Acest obiectiv a fost realizat prin dezvoltarea unor mecanisme specializate pentru
diferentierea intre emotii frecvent confundate, precum fericirea si surpriza sau tristetea si
frica.

Aceste reguli au fost integrate in procesul de clasificare, permitdnd sistemului sa
diferentieze intre emotii adesea confundate si sa ofere rezultate precise, contribuind la
atingerea unei acuratete de 93.3% pe setul de date CASME 11.

Al saselea obiectiv a vizat evaluarea riguroasa a performantei sistemelor dezvoltate
utilizdnd metrici standard si compararea cu metodele existente. Acest obiectiv a fost
indeplinit prin realizarea unei evaluari detaliate si comprehensivd a sistemelor propuse,
utilizand metricile standard din domeniu si raportdnd rezultatele in raport cu cele mai
performante metode existente.

Rezultatele acestei evaludri au confirmat imbunatatirile semnificative aduse de
abordarile propuse, stabilind o bazd solida pentru implementarea ulterioara si adoptarea
acestor tehnologii in aplicatii practice.

Diseminarea rezultatelor obtinute in cadrul acestei teze de doctorat s-a realizat prin
publicarea a doua lucrari stiintifice in cadrul conferintelor internationale (ITEMA 2023 si
ICIE 2025) si a doua articole stiintifice in reviste internationale de prestigiu, indexate Web
of Science, contribuind la vizibilitatea si validarea contributiilor aduse in domeniu.

Astfel, articolul intitulat "Face Recognition: A Literature Review", prezentat la 7th
International Scientific Conference ITEMA 2023 [203], ofera o sinteza extinsa a tehnicilor
de recunoastere faciala, analizdnd evolutia algoritmilor de la metodele traditionale la
solutiile bazate pe retele neuronale convolutionale.
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De asemenea, lucrarea "Origami Complexity Decoded: Leveraging SqueezeNet for
Image Classification", publicatd in volumul Innovations in Mechatronics Engineering IV
(Springer Lecture Notes in Mechanical Engineering), in urma participarii la conferinta ICIE
2025 [204], propune o abordare inovatoare de clasificare a imaginilor, utilizand arhitecturi
de tip SqueezeNet pentru optimizarea proceselor de recunoastere vizuald in contexte
complexe.

Articolul intitulat "Leveraging Symmetry and Addressing Asymmetry Challenges for
Improved Convolutional Neural Network-Based Facial Emotion Recognition", publicat n
revista Symmetry [135], prezintd o abordare inovatoare ce propune valorificarea simetriei in
recunoasterea emotiilor faciale utilizand o retea neuronale convolutionald personalizata. De
asemenea, solutia dezvoltata a fost integratd si validata intr-o aplicatie de recunoastere a
emotiilor faciale in timp real, demonstrand astfel fezabilitatea implementarii in contexte
practice.

Aricolul "Seeing the Unseen: Real-Time Micro-Expression Recognition with Action
Units and GPT-Based Reasoning", publicat in revista Applied Sciences [182], propune un
sistem avansat de recunoastere a microexpresiilor in timp real, integrand modele bazate pe
unitati de actiune faciala si algoritmi de rationament bazat pe modele LLM (GPT-3.5-turbo).

Aceste contributii au permis valorificarea si diseminarea rezultatelor cercetirii in
cadrul comunitatii stiintifice internationale, facilitand schimbul de idei, dezbaterea solutiilor
propuse si validarea metodologiilor dezvoltate prin evaluare de specialitate.

Publicarea acestor lucrari atesta relevanta stiintifica a cercetarii desfasurate in cadrul
tezei de doctorat si contribuie la extinderea frontierelor cunoasterii in domeniul recunoasterii
automate a macro si micro expresiilor faciale.

Totodata, teza aduce in prim-plan implicatiile etice asociate acestor tehnologii,
subliniind importanta utilizarii lor intr-un mod responsabil, cu respectarea drepturilor
fundamentale ale individului, a intimitatii si a autonomiei personale.

De asemenea, este analizatd aplicabilitatea modelelor propuse in contexte reale,
precum cel medical, educational si al securitatii, punandu-se accent pe impactul social si pe
potentialul acestora de a genera beneficii semnificative.

In concluzie, teza de doctorat contribuie semnificativ la domeniul recunoasterii micro
si macroexpresiilor, propundnd aborddri inovative pentru tratarea diferentiatd a
macroexpresiilor si microexpresiilor, si deschizand noi perspective pentru dezvoltarea
sistemelor inteligente cu capacitati avansate de perceptie si interpretare a emotiilor umane..
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