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Teza de doctorat cu titlul ”Cercetări privind recunoașterea automată a macro- și 

microexpresiilor faciale utilizând metode de inteligență artificială” abordează un domeniu 

de cercetare interdisciplinar aflat la intersecția dintre psihologie, neuroștiințe și inteligența 

artificială. 

Expresiile faciale sunt expresii universale ale emoțiilor umane și care joacă un rol 

fundamental în comunicarea nonverbală. Dezvoltarea sistemelor capabile să recunoască și 

să interpreteze aceste expresii în mod automat are implicații majore în domenii precum 

interacțiunea om-calculator, securitate, educație și sănătate. 

Dezvoltarea tehnologiilor de recunoaștere a expresiilor faciale s-a accelerat 

considerabil în ultimii ani, fiind susținută de progresele din domeniile inteligenței artificiale, 

învățării profunde și viziunii computerizate.  

Cu toate acestea, domeniul se confruntă încă cu provocări majore, în ceea ce privește 

detectarea și interpretarea precisă a macroexpresiilor (manifestări emoționale evidente, cu 

intensitate ridicată și durată mai lungă), cât și în recunoașterea microexpresiilor (manifestări 

discrete și tranzitorii care apar pentru perioade extrem de scurte și care pot dezvălui emoții 

ascunse sau suprimate). 

Teza de doctorat urmărește fluxul natural al procesului de cercetare științifică, 

progresând metodic de la fundamentele teoretice, prin metodologia aplicată și experimentele 

desfășurate, până la rezultatele obținute și concluziile finale. Organizarea tezei reflectă atât 

complexitatea domeniului abordat, cât și metodologia riguroasă aplicată pentru atingerea 

obiectivelor propuse. 

Obiective principale urmărite: 

a. Valorificarea simetriei și abordarea asimetriei în expresiile faciale pentru 

îmbunătățirea performanței algoritmilor de recunoaștere a emoțiilor. 

b. Dezvoltarea și validarea unui model CNN personalizat în timp real pentru 

recunoașterea eficientă a emoțiilor faciale, adaptat pentru a gestiona variabilitatea și 

asimetria expresiilor. 

c. Dezvoltarea unui cadru teoretic comprehensiv pentru recunoașterea facială, 

integrând teoria psihologică a expresiilor faciale (FACS) cu abordările tehnologice moderne. 

d. Implementarea unui sistem robust pentru detectarea și clasificarea microexpresiilor 

faciale în timp real, combinând tehnici tradiționale de computer vision cu algoritmi avansați 

de machine learning. 

e. Rezolvarea problemelor specifice de confuzie între emoțiile similare prin reguli 

expert și amplificarea caracteristicilor distinctive. 

f. Evaluarea riguroasă a performanței sistemelor dezvoltate utilizând metrici standard 

și compararea cu metodele existente. 

 

1. Introducere 

Teza debutează cu un capitol introductiv care stabilește cadrul conceptual și 

metodologic al cercetării. Acesta prezintă contextul științific actual în domeniul 

recunoașterii expresiilor faciale, subliniind importanța și actualitatea temei în era digitală 

contemporană. Sunt evidențiate provocările majore cu care se confruntă cercetătorii în acest 
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domeniu, de la variabilitatea expresiilor faciale în funcție de factorii culturali și individuali, 

până la dificultățile tehnice legate de achiziția și procesarea imaginilor faciale în condiții 

reale. Motivația care stă la baza acestei cercetări este prezentată în detaliu, subliniind 

potențialul aplicativ vast al sistemelor automate de recunoaștere a expresiilor faciale în 

domenii precum sănătatea mentală, securitatea, educația și interacțiunea om-calculator. O 

atenție deosebită este acordată distincției între macroexpresii  și microexpresii. Această 

distincție fundamentală constituie una dintre contribuțiile originale ale cercetării, prin 

propunerea unor abordări diferențiate pentru cele două tipuri de expresii. 

Prima abordare vizează recunoașterea macroexpresiilor faciale prin propunerea unui 

model bazat pe rețele neuronale convoluționale cu accent pe evaluarea impactului tehnicilor 

de augmentare a datelor, folosind setul de date FER-2013 și implementarea modelului în 

timp real.  

A doua abordare constă într-un sistem hibrid dedicat analizei microexpresiilor faciale, 

care integrează tehnici avansate de computer vision, reguli expert fundamentate pe sistemul 

FACS și algoritmi de inteligență artificială.  Acest sistem a fost implementat în timp real și 

testat pe bazele de date CASME II și SAMM. 

 Întrebările de cercetare care ghidează întregul demers științific, Sunt formulate în mod 

clar și explicit stabilind astfel direcțiile principale de investigație și criteriile de evaluare a 

rezultatelor.  

Cercetarea a fost ghidată de următoarele întrebări fundamentale: 

1. Care sunt cele mai eficiente tehnici și algoritmi pentru recunoașterea facială și 

detecția emoțiilor în diverse contexte și condiții? 

2. Cum poate fi valorificată și abordată simetria facială pentru a îmbunătăți 

performanța sistemelor de recunoaștere a emoțiilor? 

3. Cum pot fi optimizate rețelele neuronale convoluționale pentru a gestiona eficient 

provocările specifice recunoașterii emoțiilor faciale, luând în considerare dezechilibrul între 

clase și variabilitatea expresiilor? 

4. În ce măsură poate o abordare hibridă, combinând tehnici avansate de computer 

vision, reguli expert bazate pe sistemul Facial Action Coding System (FACS) și algoritmi 

de inteligență artificială, să îmbunătățească detecția microexpresiilor faciale? 

5. Care sunt cele mai eficiente strategii pentru diferențierea între emoții similare din 

punct de vedere al expresiilor faciale?  

 

2. Stadiul actual al cercetării 

 

Acest capitol oferă o analiză comprehensivă și critică a literaturii de specialitate, 

evidențiind evoluția metodelor și tehnicilor de recunoaștere a expresiilor faciale de-a lungul 

timpului. Acesta începe cu o incursiune istorică în dezvoltarea teoriilor emoțiilor și a 

expresiilor faciale, pornind de la lucrările fundamentale ale lui Charles Darwin și Paul 

Ekman, care au stabilit baza conceptuală a universalității anumitor expresii emoționale. Sunt 

prezentate metodele tradiționale de recunoaștere a expresiilor faciale, bazate pe extragerea 

manuală a trăsăturilor și utilizarea clasificatorilor clasici. Evoluția cronologică a domeniului 
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este urmărită prin prezentarea trecerii spre abordările bazate pe învățare automată, cu accent 

pe apariția și dezvoltarea rețelelor neuronale convoluționale (CNN) care au revoluționat 

domeniul recunoașterii vizuale a patternurilor. Sunt analizate comparativ diverse arhitecturi 

CNN care au fost aplicate cu succes în domeniul recunoașterii expresiilor faciale, precum 

VGG, ResNet, Inception și EfficientNet, evidențiind avantajele și limitările fiecăreia.  

O secțiune substanțială este dedicată metodelor specializate pentru detectarea și 

recunoașterea microexpresiilor. Sunt prezentate tehnicile de analiză a mișcării bazate pe flux 

optic, magnification video și analiza temporală a schimbărilor faciale, care sunt esențiale 

pentru captarea microexpresiilor.  

Capitolul include, de asemenea, o analiză a sistemelor hibride care combină diverse 

abordări pentru îmbunătățirea performanțelor de recunoaștere, precum și a potențialului 

modelelor LLM în interpretarea contextului emoțional. Analiza literaturii de specialitate se 

încheie cu identificarea clară a limitărilor actuale ale sistemelor existente, creând astfel 

premisele pentru contribuțiile originale propuse în cadrul tezei. 

 

3. Seturi de date și resurse 

 

Baza de date FER2013 (Facial Emotion Recognition 2013) este analizată în detaliu, 

fiind alcătuită din peste 35.000 de imagini faciale în nunațe de gri, distribuite în șapte 

categorii emoționale: fericire, tristețe, frică, furie, dezgust, surpriză și neutralitate. Sunt 

discutate avantajele acestei baze de date, cum ar fi volumul mare de imagini și diversitatea 

condițiilor de captare, dar și limitările sale legate de dezechilibrul între clase și rezoluția 

relativ scăzută a imaginilor.  

Pentru studiul microexpresiilor, sunt prezentate două baze de date specializate: 

CASME II (Chinese Academy of Sciences Micro-Expression Database II) și SAMM 

(Spontaneous Actions and Micro-Movements). CASME II este o colecție de 255 de 

microexpresii capturate la o rată ridicată de cadre pe secundă (200 fps), clasificate în cinci 

clase emoționale principale, în timp ce SAMM oferă 159 de microexpresii capturate la 200 

fps, cu o diversitate demografică mai mare. În Capitolul continuă cu descrierea detaliată a 

instrumentelor software și hardware folosite pentru dezvoltarea sistemului propus. Sunt 

prezentate bibliotecile Python specializate pentru procesarea imaginilor și învățare profundă, 

cum ar fi OpenCV pentru manipularea imaginilor, TensorFlow și Keras pentru 

implementarea rețelelor neuronale, MediaPipe pentru detectarea și urmărirea punctelor de 

reper faciale, precum și tehnologiile OpenAI pentru aspectele legate de integrarea modelelor 

lingvistice. Specificațiile hardware utilizate pentru antrenarea și testarea modelelor sunt, de 

asemenea, detaliate, subliniind importanța resurselor computaționale adecvate pentru 

procesarea eficientă a algoritmilor de învățare profundă. 

Nu în ultimul rând este prezentată configurația hardware utilizată. Un sistem de calul 

cu un procesor Intel Core i7-10700K, 32GB de RAM DDR4,  SSD 1TB și o placă NVIDIA 

GeForce RTX 3080, 10GB RAM. 
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4. Metodologia cercetării 

 

Constituie nucleul conceptual al tezei de doctorat, detaliind arhitecturile generale a 

sistemului de identificare a emoțiilor dezvoltate. Capitolul începe cu prezentarea cadrului 

metodologic general, bazat pe principiile învățării profunde și pe analiza morfologică a 

expresiilor faciale. Este explicată abordarea diferențiată adoptată pentru macroexpresii și 

microexpresii, justificată prin natura distinctă a acestor două tipuri de manifestări 

emoționale.  

Pentru macroexpresii, este prezentată în detaliu arhitectura modelului bazat pe rețele 

neuronale convoluționale (CNN), începând cu structura straturilor convoluționale, funcțiile 

de activare utilizate și mecanismele implementate pentru prevenirea overfitting-ului. Sunt 

explicate motivațiile din spatele fiecărei decizii arhitecturale, cum ar fi alegerea dimensiunii 

filtrelor, a strategiilor de pooling și a organizării straturilor dense finale. O atenție deosebită 

este acordată metodelor de preprocesare a imaginilor faciale, care includ detectarea feței, 

normalizarea și augmentarea datelor.  

Pentru sistemul dedicat microexpresiilor, este prezentată arhitectura hibridă 

dezvoltată, care combină analiza temporală a secvențelor video cu extragerea trăsăturilor 

spațiale. Sunt detaliate tehnicile utilizate pentru amplificarea mișcărilor subtile ale mușchilor 

faciali, precum și metodele de analiză pentru captarea dinamicii temporale a 

microexpresiilor.  O contribuție semnificativă prezentată în acest capitol este procesul de 

integrare a modelelor lingvistice de mari dimensiuni (LLM), specific GPT-3.5-turbo, în 

fluxul de procesare pentru gestionarea situațiilor ambigue în care clasificarea bazată pe 

reguli nu oferă o decizie concludentă. Acest proces implică generarea automată a unui 

prompt structurat incluzând lista unităților de acțiune detectate, regulile explicite de 

clasificare și informații contextuale; procesarea promptului de către modelul LLM; validarea 

răspunsului prin verificarea conformității cu regulile și constrângerile definite în sistem; și 

aplicarea regulilor de corecție și filtrare pentru eventualele răspunsuri eronate sau 

inconsistente. 

Capitolul include, de asemenea, descrierea algoritmilor de segmentare facială 

utilizați pentru izolarea regiunilor de interes relevante pentru expresiile emoționale, 

implementarea modulelor de analiză a asimetriei faciale, metodologia de antrenare a 

modelelor, incluzând strategiile de optimizare, funcțiile de pierdere utilizate, tehnicile de 

ajustare a hiperparametrilor și metricile de evaluare utilizate ( matricea de confuzie, precizia, 

recall-ul și scorul F1).  

 

5. Experimente 

 

Partea experimentală a tezeide doctorat detaliază protocoalele de testare și evaluare a 

modelelor propuse. Capitolul debutează cu prezentarea metodologiei experimentale 

generale, accentuând importanța validării încrucișate în vederea obținerii unor estimări 

robuste și fiabile ale performanței sistemului propus. În cadrul studiului au fost realizate șase 
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experimente distincte, orientate spre analiza eficienței rețelei neuronale convoluționale 

(CNN) în recunoașterea macroexpresiilor faciale și testate pe baza de date FER2013. Fiecare 

experiment a testat o configurație diferită a procesului de antrenare: 

● Cazul 1: Rețeaua CNN a fost antrenată utilizând funcția Shuffle.  

● Cazul 2: Rețeaua CNN a fost antrenată utilizând funcția Shuffle și funcția Flip 

Vertical. 

● Cazul 3: Rețeaua CNN a fost antrenată utilizând funcția Loss Weight.  

● Cazul 4: Rețeaua CNN a fost antrenată utilizând funcția Shuffle și funcția Loss 

Weight.   

● Cazul 5: Rețeaua CNN a fost antrenată utilizând o configurație complexă, care a 

integrat simultan funcțiile Flip Vertical, Shuffle și Loss Weight. 

● Cazul 6: Rețeaua CNN a fost antrenată utilizând funcția Shuffle, însă s-a introdus o 

modificare suplimentară prin creșterea dimensiunii lotului de testare. 

Procesul de antrenare a rețelei neuronale convoluționale (CNN) este descris în detaliu, 

incluzând strategiile de inițializare a ponderilor, algoritmii de optimizare utilizați  precum și 

tehnicile de normalizare a datelor. Aceste elemente au fost esențiale pentru a preveni 

supraînvățarea și pentru a asigura o generalizare eficientă a modelului.  De asemenea, sunt 

prezentate modalitățile de ajustare a hiperparametrilor, precum rata de învățare, dimensiunea 

lotului (batch size) și numărul de epoch.  

De asemenea, a fost descrisă implementarea în timp real a modelului CNN propus, 

pentru a evalua capacitatea acestuia de a funcționa eficient într-un mediu aplicativ.  

Pentru experimentele cu microexpresii sunt detaliate procedurile de extracție a 

secvențelor relevante din înregistrările video, sincronizarea cadrelor și tehnicile de 

amplificare applicate.  

Testarea sistemului hibrid s-a realizat pe bazele de date CASME II și SAMM și a 

urmărit :  

● Acuratețea detecției unităților de acțiune facială în raport cu adnotările manuale din 

bazele de date; 

● Eficiența regulilor expert în clasificarea microexpresiilor; 

● Eficacității integrării modelului LLM în rezolvarea cazurilor ambigue; 

● Performanța globală a sistemului hibrid în condiții de funcționare în timp real. 

 

6. Rezultate și analiza rezultatelor 

 

Rezultatele obținute în urma experimentelor sunt analizate riguros  și performanțele 

modelelor propuse sunt interpretate utilizând o serie de metrici standardizate precum 

matricea de confuzie acuratețea globală, precizia, sensibilitatea (recall) și scorul F1.    

Capitolul este structurat în două secțiuni principale: analiza performanței modelului 

CNN propus și analiza performanței modelului hibrid propus. 

Prima secțiune evaluează performanța rețelei neuronale convoluționale (CNN) propuse 

pentru clasificarea macroexpresiilor faciale. Modelul a fost testat în șase configurații 
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experimentale diferite, utilizând diverse strategii de augmentare a datelor descries în 

capitolul anterior. Acuratețea globală a modelului este de 92%.  

Matricile de confuzie generate pentru cele șase cazuri experimentale au evidențiat 

performanțe ridicate ale modelului propus pe fiecare clasă de emoție. Sunt evidențiate clasele 

emoționale care prezintă confuzii frecvente, cum ar fi frica și surprins sau tristețe și neutru 

(lipsa stării emoționale). 

Analiza preciziei pe fiecare clasă emoțională a relevat (Tabelul 6.1): performanță 

ridicată pentru emoțiile distincte precum fericirea (>90%), precizie bună pentru clasa de 

emoții neutru și surprins  (>75%), provocări în clasificarea precisă a emoțiilor similare 

precum frica și tristețea și influența semnificativă a tehnicilor de augmentare asupra preciziei 

pentru anumite clase emoționale. 

 

Tabel 6.1 Precizia (%) pe fiecare emoție în cele 6 cazuri 

 

Emoție Cazul 1 Cazul 2 Cazul 3 Cazul 4 Cazul 5 Cazul 6 

furie 0.88 0.88 0.88 0.89 0.88 0.90 

dispreț 0.95 0.99 0.97 0.84 0.94 0.98 

frică 0.89 0.92 0.89 0.90 0.90 0.85 

fericire 0.96 0.94 0.95 0.96 0.95 0.94 

neutru 0.88 0.89 0.91 0.87 0.87 0.87 

tristețe 0.88 0.89 0.88 0.87 0.89 0.86 

surprinză 0.95 0.95 0.92 0.95 0.93 0.87 

 

Analiza recall-ului pe fiecare clasă emoțională a arătat (tabelul 6.2): recall ridicat 

pentru fericire și expresii neuter, valori moderate pentru surprins și furie, provocări în 

detectarea completă a instanțelor de frică și dispreț, variații semnificative ale recall-ului în 

funcție de tehnicile de augmentare utilizate. 

 

Tabel 6.2 Recall pe fiecare emoție în cele 6 cazuri 

 

Emoție Cazul 

1 

Cazul 

2 

Cazul 3 Cazul 

4 

Cazul 

5 

Cazul 6 

furie 0.86 0.88 0.89 0.89 0.88 0.92 

dispreț 0.87 0.88 0.86 0.89 0.88 0.90 

frică 0.88 0.88 0.90 0.88 0.87 0.82 

fericire 0.95 0.96 0.94 0.94 0.94 0.95 

neutru 0.93 0.91 0.91 0.92 0.93 0.89 

tristețe 0.88 0.88 0.88 0.88 0.86 0.82 

surprinză 0.94 0.95 0.94 0.94 0.94 0.88 
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Scorul F1 a oferit o perspectivă echilibrată asupra performanței modelului (Tabelul 

6.3): scoruri F1 ridicate pentru fericire (>85%), valori bune pentru clasa de emoții neutru și 

surprins, scoruri moderate pentru furie și valori mai scăzute pentru frică și dispreț. 

 

Tabel 6.3 Scor F1  pe fiecare emoție în cele 6 cazuri 

Emoție Cazul 1 Cazul 2 Cazul 3 Cazul 4 Cazul 5 Cazul 6 

Furie 0.88 0.88 0.89 0.89 0.88 0.91 

Dispreț 0.91 0.93 0.91 0.92 0.91 0.94 

Frică 0.88 0.90 0.89 0.89 0.89 0.83 

Fericire 0.96 0.95 0.95 0.95 0.94 0.94 

Neutru 0.90 0.90 0.91 0.89 0.90 0.88 

Tristețe 0.88 0.89 0.88 0.87 0.88 0.84 

Uimire 0.94 0.95 0.93 0.94 0.94 0.87 

 

Un aspect semnificativ al rezultatelor este reprezentat de consistența scorurilor F1 în 

toate cele șase configurații experimentale, ceea ce reflectă stabilitatea operațională a 

modelului în fața variabilității externe. 

Implementarea în timp real a modelului CNN a demonstrat capacitatea sistemului de 

a funcționa eficient în condiții practice, cu o rată de procesare de peste 25 de cadre pe 

secundă. 

A doua secțiune evaluează performanța modelului hibrid propus pentru microexpresii. 

La testarea pe baza de date CASME II precizia obținută a fost de 93,3% , iar pe SAMM 

98,4%.  Testarea modelului hibrid a evidențiat eficiența mecanismului de integrare LLM în 

rezolvarea cazurilor ambigue, și robustețea clasificării în fața variabilității expresiilor între 

subiecți diferiți. Sunt evaluate dificultățile particulare întâmpinate în detectarea diferitelor 

tipuri de microexpresii, corelându-le cu aspecte fiziologice ale mușchilor faciali implicați. 

Rezultatele obținute în urma implementării în timp real au validat robustețea și 

aplicabilitatea practică a sistemului propus 

Capitolul abordează, de asemenea, efectele dezechilibrelor de clasă asupra 

performanțelor de recunoaștere. Sunt analizate în detaliu cazurile de confuzie emoțională, 

corelându-le cu teoriile psihologice privind similaritățile și suprapunerile între anumite 

expresii emoționale, precum și cu limitările inerente ale reprezentărilor vizuale pentru 

captarea întregului spectru emoțional uman. 

 

7. Discuții 

 

Discuțiile integrate în acest capitol plasează rezultatele obținute în contextul mai larg al 

literaturii de specialitate, evidențiind contribuțiile originale ale tezei de doctorat.  

Principalele puncte forte ale modelului CNN propus pentru macroexpresii sunt: 

● Valorificarea optimă a simetriei faciale pentru îmbunătățirea clasificării 

● Tehnicile de augmentare a datelor au avut un impact semnificativ asupra robusteții 

modelului, reducând supraantrenarea și îmbunătățind capacitatea de generalizare a 

modelului propus.  
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● Eficiența computațională - modelul atinge un echilibru între complexitate și 

performanță, fiind optimizat pentru utilizare în timp real 

● Robustețea în fața variațiilor - capacitatea de a gestiona variații de iluminare, 

poziționare și expresivitate individuală 

● Acuratețea clasificării - performanțe competitive (aproximativ 90-91%) pe setul 

FER2013, în comparație cu alte modele din literatura de specialitate 

● Implementarea practică - funcționalitate demonstrată în condiții de operare în timp 

real 

Sistemul hibrid propus pentru detecția microexpresiilor reprezintă o contribuție 

semnificativă în domeniu, oferind: 

● O abordare modulară care îmbunătățește transparența și controlul asupra fluxului 

decizional 

● Flexibilitate în adaptarea la seturi de date dezechilibrate - eficiență îmbunătățită în 

gestionarea claselor minoritare și a expresiilor rare sau atipice 

● Rezolvarea eficientă a ambiguităților între emoții similare (ex. frică-surprins sau 

tristețe-dispreț) 

● Integrarea inovatoare a modelelor LLM pentru îmbunătățirea procesului decizional 

abordarea hibridă care combină detecția automată a unităților de acțiune (AU) cu 

clasificarea realizată prin intermediul unui model LLM (GPT-3.5-turbo) 

● Performanțe superioare – precizie de 93.3 pe baza de date CASME II și  de 98,46% 

pe baza de date SAMM, reprezentând un avans semnificativ față de metodele 

tradiționale 

 

8. Limitări și direcții viitoare de cercetare 

 

Se prezintă o analiză critică a limitărilor identificate în cadrul modelelor dezvoltate 

și se propun direcții de cercetare. 

În ceea ce privește modelul CNN propus pentru recunoașterea macroexpresiilor, 

principalele limitări identificate includ: 

● Utilizarea setului de date FER2013 care prezintă un dezechilibru între clase, 

afectează performanța modelului în recunoașterea emoțiilor minim reprezentate, cum ar fi 

disprețul și uimirea.  

● Dependența de imaginile în tonuri de gri limitează aplicabilitatea modelului în timp 

real, unde datele sunt colorate și pot include variații naturale de lumină și contrast.  

● Testarea pe un număr limitat de subiecți poate limita generalizarea modelului la o 

populație mai largă și diversă din punct de vedere cultural și demografic.  

● Sensibilitatea la variațiile de iluminare și poziție a feței rămâne o provocare, în pofida 

tehnicilor de augmentare implementate, putând influența negativ performanța sistemului în 

contexte necontrolate. 

În ceea ce privește sistemul hibrid pentru recunoașterea microexpresiilor, limitările 

principale includ: 
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● Dependența de calitatea detecției inițiale a unităților de acțiune poate afecta întregul 

pipeline de clasificare, introducând erori care se propagă în sistem. 

● Variabilitatea culturală și demografică în exprimarea microexpresiilor nu a fost pe 

deplin testată în modelul actual, ceea ce poate limita aplicabilitatea sa universală. 

● Necesitatea resurselor computaționale semnificative pentru rularea modelului hibrid 

poate reprezenta o barieră pentru implementarea în dispozitive cu resurse limitate 

sau în aplicații care necesită procesare edge computing. 

● Provocările etice și de confidențialitate asociate cu recunoașterea emoțiilor în timp 

real rămân aspecte importante care necesită o abordare responsabilă în dezvoltarea 

și implementarea sistemelor bazate pe aceste tehnologii. 

Principalele direcții de dezvoltare viitoare ca urmare a analizării rezultatelor obținute 

și a limitărilor identificate în cadrul studiului sunt: 

● Sisteme multi-modale care combină analiza expresiilor faciale cu alte modalități 

precum  (voce, gesturi) 

● Arhitecturi adaptative personalizate pentru utilizatori individuali, capabile să se 

adapteze la specificul expresiv al fiecărui individ, prin tehnici de calibrare și transfer 

learning 

● Sisteme explicabile și transparente (XAI) pentru interpretarea deciziilor modelelor 

● Abordări contextuale care integrează factori situaționali în recunoașterea emoțiilor 

● Extensii pentru aplicații specifice în educație, sănătate și Securitate 

● Explorarea implicațiilor etice. 

 

9. Concluzii generale 

 

Acest capitol sintetizează principalele contribuții și realizări ale tezei de doctorat, 

oferind o perspectivă integrată asupra implicațiilor teoretice și practice. Sunt recapitulate 

obiectivele inițiale și modul în care acestea au fost îndeplinite prin metodologia propusă și 

rezultatele obținute.  

Primul obiectiv al cercetării a vizat explorarea modului în care simetria facială poate 

fi valorificată pentru îmbunătățirea performanței algoritmilor de recunoaștere a emoțiilor. S-

a demonstrat că simetria facială joacă un rol important în recunoașterea corectă a emoțiilor, 

iar asimetria – fie cea naturală, fie cea indusă de factori emoționali – poate afecta 

semnificativ acuratețea clasificării. 

Aceste tehnici au contribuit la o interpretare mai nuanțată și precisă a emoțiilor 

exprimate, ducând la o îmbunătățire semnificativă a acurateței algoritmilor de recunoaștere, 

care a atins 92%. 

Al doilea obiectiv a vizat dezvoltarea și validarea unui model CNN capabil să 

funcționeze în timp real și să gestioneze eficient variabilitatea și asimetria expresiilor faciale. 

Acest obiectiv a fost îndeplinit prin proiectarea și implementarea unei arhitecturi CNN 

personalizate, optimizată pentru recunoașterea emoțiilor faciale în condiții diverse de 

iluminare, unghi și variabilitate individuală. 
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Implementarea acestui model a confirmat eficacitatea abordării propuse, subliniind 

potențialul său pentru aplicații în timp real în domenii precum interacțiunea om-computer, 

securitate sau analiză comportamentală. 

Al treilea obiectiv a vizat elaborarea unui cadru teoretic comprehensiv care să 

integreze teoriile psihologice ale expresiilor faciale cu abordările tehnologice moderne. 

Acest obiectiv a fost realizat prin dezvoltarea unei baze conceptuale solide care combină 

sistemul FACS (Facial Action Coding System) cu tehnicile avansate din domeniul machine 

learning și computer vision. 

Această integrare a permis o abordare mai holistică în studierea expresiilor faciale, 

facilitând atât analizarea emoțiilor, cât și dezvoltarea algoritmilor capabili să interpreteze 

aceste expresii în mod eficient și nuanțat. 

Al patrulea obiectiv a vizat implementarea unui sistem robust pentru detectarea și 

clasificarea microexpresiilor faciale în timp real. Acest obiectiv a fost îndeplinit prin 

dezvoltarea sistemului hibrid care combină tehnici tradiționale de computer vision cu 

algoritmi avansați de machine learning și inteligență artificială. 

Acest sistem nu doar că facilitează o detectare rapidă a emoțiilor discrete, dar asigură 

și o clasificare precisă în timp real, oferind aplicații promițătoare în domenii precum 

psihologie și securitate. 

Al cincilea obiectiv a vizat abordarea problemelor specifice de confuzie între emoții 

similare prin implementarea unor reguli expert și amplificarea caracteristicilor distinctive. 

Acest obiectiv a fost realizat prin dezvoltarea unor mecanisme specializate pentru 

diferențierea între emoții frecvent confundate, precum fericirea și surpriza sau tristețea și 

frica. 

Aceste reguli au fost integrate în procesul de clasificare, permițând sistemului să 

diferențieze între emoții adesea confundate și să ofere rezultate precise, contribuind la 

atingerea unei acuratețe de 93.3% pe setul de date CASME II. 

Al șaselea obiectiv a vizat evaluarea riguroasă a performanței sistemelor dezvoltate 

utilizând metrici standard și compararea cu metodele existente. Acest obiectiv a fost 

îndeplinit prin realizarea unei evaluări detaliate și comprehensivă a sistemelor propuse, 

utilizând metricile standard din domeniu și raportând rezultatele în raport cu cele mai 

performante metode existente. 

Rezultatele acestei evaluări au confirmat îmbunătățirile semnificative aduse de 

abordările propuse, stabilind o bază solidă pentru implementarea ulterioară și adoptarea 

acestor tehnologii în aplicații practice. 

Diseminarea rezultatelor obținute în cadrul acestei teze de doctorat s-a realizat prin 

publicarea a două lucrări științifice în cadrul conferințelor internaționale (ITEMA  2023 și 

ICIE 2025) și a două articole științifice în reviste internaționale de prestigiu, indexate Web 

of Science, contribuind la vizibilitatea și validarea contribuțiilor aduse în domeniu.  

Astfel, articolul intitulat "Face Recognition: A Literature Review", prezentat la 7th 

International Scientific Conference ITEMA 2023 [203], oferă o sinteză extinsă a tehnicilor 

de recunoaștere facială, analizând evoluția algoritmilor de la metodele tradiționale la 

soluțiile bazate pe rețele neuronale convoluționale.  
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De asemenea, lucrarea "Origami Complexity Decoded: Leveraging SqueezeNet for 

Image Classification", publicată în volumul Innovations in Mechatronics Engineering IV 

(Springer Lecture Notes in Mechanical Engineering), în urma participării la conferința ICIE 

2025 [204], propune o abordare inovatoare de clasificare a imaginilor, utilizând arhitecturi 

de tip SqueezeNet pentru optimizarea proceselor de recunoaștere vizuală în contexte 

complexe.  

Articolul intitulat "Leveraging Symmetry and Addressing Asymmetry Challenges for 

Improved Convolutional Neural Network-Based Facial Emotion Recognition", publicat în 

revista Symmetry [135], prezintă o abordare inovatoare ce propune valorificarea simetriei în 

recunoașterea emoțiilor faciale utilizând o rețea neuronale convolutională personalizată. De 

asemenea, soluția dezvoltată a fost integrată și validată într-o aplicație de recunoaștere a 

emoțiilor faciale în timp real, demonstrând astfel fezabilitatea implementării în contexte 

practice.  

Aricolul "Seeing the Unseen: Real-Time Micro-Expression Recognition with Action 

Units and GPT-Based Reasoning", publicat în revista Applied Sciences [182], propune un 

sistem avansat de recunoaștere a microexpresiilor în timp real, integrând modele bazate pe 

unități de acțiune facială și algoritmi de raționament bazat pe modele LLM (GPT-3.5-turbo).  

Aceste contribuții au permis valorificarea și diseminarea rezultatelor cercetării în 

cadrul comunității științifice internaționale, facilitând schimbul de idei, dezbaterea soluțiilor 

propuse și validarea metodologiilor dezvoltate prin evaluare de specialitate. 

Publicarea acestor lucrări atestă relevanța științifică a cercetării desfășurate în cadrul 

tezei de doctorat și contribuie la extinderea frontierelor cunoașterii în domeniul recunoașterii 

automate a macro și micro expresiilor faciale. 

Totodată, teza aduce în prim-plan implicațiile etice asociate acestor tehnologii, 

subliniind importanța utilizării lor într-un mod responsabil, cu respectarea drepturilor 

fundamentale ale individului, a intimității și a autonomiei personale. 

De asemenea, este analizată aplicabilitatea modelelor propuse în contexte reale, 

precum cel medical, educațional și al securității, punându-se accent pe impactul social și pe 

potențialul acestora de a genera beneficii semnificative.   

În concluzie, teza de doctorat contribuie semnificativ la domeniul recunoașterii micro 

și macroexpresiilor, propunând abordări inovative pentru tratarea diferențiată a 

macroexpresiilor și microexpresiilor, și deschizând noi perspective pentru dezvoltarea 

sistemelor inteligente cu capacități avansate de percepție și interpretare a emoțiilor umane.. 
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