MINISTRY OF EDUCATION UNIVERSITY OF PETROŞANI DOCTORAL SCHOOL DOCTORAL FIELD: ENGINEERING SYSTEMS

Eng. ADRIAN BOGDAN ŞIMON-MARINICĂ

DOCTORAL THESIS

MODELAREA ȘI SIMULAREA FORMĂRII COMBUSTIEI AMESTECURILOR EXPLOZIVE

MODELING AND SIMULATION OF THE COMBUSTION FORMATIONS OF EXPLOSIVE MIXTURES

Scientific coordinator,

Prof.univ.dr.habil.ing. MONICA LEBA

Petroșani 2024

SUMMARY

ACRONYMS AND NOTATIONS		6
LIST OF FIGURES		7
LIST OF TABLES		11
INTRODUCTION		12
CHAPTER I	CURRENT STATE OF RESEARCH ON EXPLOSIVE MIXTURES	16
	1.1. Fundamentally elements in the formation of gas mixtures	16
	1.1.1 Determination of ideal gases under conditions of temperature, pressure and volume	16
	1.1.2 Determination of non-ideal gases under conditions of temperature, pressure and volume	19
	1.2. Flow and volume measurements	20
	1.2.1 Spirometers measurements	20
	1.2.2 Pitot tube measurements	22
	1.2.3 Measurements by frictionless pistons	23
	1.2.4 Syringe engagement measurements	25
	1.2.5 Measurements by suction bottles	26
	1.3. Volume or flow measurements by intermediate standards	26
	1.3.1 Wet test meters	26
	1.3.2 Dry test-measuring devices	29
	1.4. Volume or flow measurements by secondary standards	30
	1.4.1 Flowmeters	30
	1.4.2 Masic flowmeters	32
	1.4.3 Flowmeters with holes	34
	1.4.4 Flowmeters with critical holes	35
	1.5. Static systems to produce gas mixtures at atmospheric pressure.	37
	1.6. The gravimetric method	41

	1.7. The method of partial pressures	42
	1.8. Volumetric method	43
CHAPTER II	THEORETICAL ASPECTS REGARDING EXPLOSIVE CHARACTERISTICS AND PARAMETERS OF FLAMMABLE AIR GAS MIXTURES	45
	2.1. Combustion properties of air-flammable gas mixtures	45
	2.2. Explosive gaseous atmospheres	46
	2.2.1 Methane characteristics, the predominant component of natural gas	46
	2.2.2 Explosion parameters of methane-air mixtures	47
	2.2.3 Propane characteristics	48
	2.2.4 Explosion parameters of propane-air mixtures	48
	2.2.5 Characteristics of isobutene	48
	2.2.6 Characteristics of dimethyl ether (DME)	49
	2.2.7 The turbulence of flammable mixtures	49
	2.3. Sampling and analysis of gases and vapors	54
	2.3.1 Sampling with enrichment	54
	2.3.2 Sampling pumps	54
	2.3.3 Adsorption tubes	55
	2.3.4 Washing bottles	55
	2.3.5 Reaction samplers	55
	2.3.6 Sampling without enrichment	55
	2.3.7 Gas storage boxes and gas sample bags	56
	2.3.8 Test tubes	56
	2.3.9 Direct reading instruments	56
	2.3.10 Flame ionization detector	56
	2.3.11 Photoionization detector	57
	2.3.12 Infrared spectrophotometer	57
	2.3.13 Electrochemical gas sensors	57
	2.3.14 Other direct reading devices	58
	2.4. Sample transport and storage	58

	2.4.1 Sample transport	58
	2.4.2 Sample storage	59
	2.5. Circumstances leading to a gas explosion	59
	2.6. Theoretical calculations regarding the estimation of the explosion pressure.	62
CHAPTER III	LABORATORY TECHNIQUES FOR MAKING EXPLOSIVE/GASEOUS MIXTURES	66
	3.1. Partial pressures law	66
	3.2. Automatic gas mixer with flow meters and electric instrument for high tensions	67
	3.2.1 Spark instrument description and the gas-mixing device	67
	3.2.2 The use limits of the spark instrument	69
	3.2.3 The making of the test gas mixture	69
	3.2.4 Preparation for use of the spark instrument	72
	3.2.5 Carrying out the test with the spark instrument	73
	3.3. Servomex, portable oxygen analyzer	73
	3.3.1 The principle of the method of operation	73
	3.3.2 Analyzer description	74
	3.4. Dosing instrument – digital gas dispenser for mixtures preparations.	74
	3.4.1 The principle of the measuring method of the dosing instrument.	75
CHAPTER IV	DESIGN AND EXPERIMENTATION OF AUTOMATIC GAS MIXING SYSTEM	77
	4.1. Designing an automatic system with electrical control for the preparation of bi-component mixtures (flammable gas/air)	77
	4.1.1 Realization and operation of the computerized stand	79
	4.1.2 Calculation algorithm for achieving a flammable gas concentration.	80
	4.1.3 Control of gas concentrations using stepper motors	81
	4.1.3.1 Working principle of stepper motor	81
	4.1.4 TB6600 type micro-stepper driver for stepper motors	82

	4.2. Experimentation of the automatic electrically controlled system for the preparation of flammable gas/air mixtures at concentrations in the explosive range for methane gas	85
	4.3. Experimentation of the automatic electrically controlled system for the preparation of flammable gas/air mixtures at concentrations within the flammability limits for hydrogen gas	88
	4.3.1 Obtained results of hydrogen-air mixture displayed on the multi-gas detector	89
	4.4. Experimental modeling of the escape, formation and ignition of the explosive air-flammable gas cloud	90
	4.4.1 Obtained results	91
	4.5. Computer modeling of flammable gas/air mixtures at concentrations in the explosive range for methane gas	93
CHAPTER V	COMPUTER SIMULATIONS OF EXPLOSIONS OF EXPLOSIVE MIXTURES IN GLASS TUBES	97
	5.1. Schlieren and Shadowgraph imaging systems	98
	5.1.1 Schlieren imaging techniques	99
	5.1.2 Schlieren classic system	99
	5.1.3 BOS (Background oriented Schlieren) system	102
	5.1.4 Shadowgraph imaging technique	104
	5.2. Imaging research of gas explosions	105
	5.3. Calibration of computer simulations of gas explosions using the Schlieren effect	112
	5.4. Physical experiments with combustible gases mixed with air to record initiation for explosive mixtures from 7 different ignition sources	115
	5.4.1 Electric sparks	116
	5.4.2 Mechanical snarks	118
	5.4.3 The Corona effect	120
	5.4.4 Open flame	120
	5.4.5 Hot surfaces	122
	5.4.6 Electric arc	123
	5.4.7 Exothermic chemical reactions	12/ 121
		1.71

CHAPTER VI	CONCLUSIONS, PERSONAL CONTRIBUTIONS AND FUTURE RESEARCH DIRECTIONS	134
	6.1 Conclusions	134
	6.2 Personal contributions	138
	6.3 Future research directions	141
BIBLIOGRAPHY		142
ANNEX		150

ACRONYMS AND NOTATIONS

SR EN 60079-11 – Explosive atmospheres. Part 11: Equipment protection through intrinsic security i SR EN 60079-2 - Explosive atmospheres. Part 2: Equipment protection by pressurized housing p L.F.L. – Lower flammability limit U.F.L. – Upper flammability limit L.E.L. – Low explosion limit U.E.L. – Upper explosion limit L.I.E. – Lower explosion limit L.S.E. – Upper explosion limit D.M.E. – Dimethyl ether F.I.D. - Flame ionization detector P.I.D. – Photoionization detector U.V. - Ultraviolet radiation I.R. – Infrared radiation I.M.S. – Ion mobility spectrometer I.L. – Working instructions M.F.C. - Mass flow controllers 3D - Tridimensional A.C. – Alternative current V.C.C. – The voltage connected to the circuit D.I.P. – Dual in-line package P.C. – Personal computer FLIR - Teledyne FLIR LLC, ex FLIR Systems Inc. G.P.L. – Liquefied petroleum gas C.F.D. - Computational fluid dynamics C.A.D. - Computer-aided design I.N.C.D.INSEMEX - National institute for research and development in mine safety and explosive protection P.V.C. – Polyvinyl chloride B.O.S. - Background Oriented Schlieren P.C.C. – Phantom Camera Control U.D.F. – User – defined functions

C. – Programming language

LIST OF FIGURES

FIGURE	SPECIFICATION
Fig. 1.1	Compressibility and pressure for 6 gases
Fig. 1.2	Cross-sectional spirometer system
Fig. 1.3	Simplified cross-sectional view of the spirometer
Fig. 1.4	Standard Pitot tube
Fig. 1.5.	Measuring tubes with soap bubbles for measuring gas
Fig. 1.6.	Mercury sealed piston for gas measurement
Fig. 1.7.	Syringe system for calibrating corrosive flow devices
Fig. 1.8	Suction bottles for measuring small flows
Fig. 1.9	Measuring instrument calibration stand with a spirometer and wet testing
Fig. 1.10	Cross section and operation mode of a dry gas instrument
Fig. 1.11	Types of flow meters
Fig. 1.12	Graphical representation of an orifice flowmeter
Fig. 1.13	Critical orrifice
Fig. 2.1	Development of the methane/air explosion at different degrees of swirl
Fig 2.2.	The influence of the degree of turbulence on the methane / air mixture; (volume 40 liters), source of initiation: electric discharge of 1mm
Fig 2.3.	The influence of the degree of turbulence on the methane / air mixture; (volume 40 liters), source of initiation: chemical igniter
Fig 2.4.	The explosion parameters of methane in interconnected containers (V1=1 m^3 -> V2= 5 m^3)
Fig 2.5.	Explosion parameters of methane in interconnected vessels (V1=5 m^3 -> V2= 1 m^3)
Fig 2.6.	Analysis of the risk of gas explosions
Fig 2.7.	Dispersion of gases in areas with different concentrations
Fig 2.8.	The effect given by the direction of the wind on the cloud formed by the leakage of gases
Fig. 3.1.	Test gas mixer main assembly
Fig. 3.2.	Spark equipment and component elements
Fig. 3.3.	Command and control system
Fig. 3.4.	Interferometer

Fig. 3.5.	Spark equipment with system for mixing the test gases
Fig. 3.6.	Gas exhaust valve
Fig. 3.7.	Gas supply sources for mixing
Fig. 3.8.	Purge control and command panel
Fig. 3.9.	Adjustments of the sample gas mixer
Fig. 3.10.	Calibration of automatic gas mixer with spark equipment
Fig. 3.11.	Servomex portable oxygen analyzer
Fig. 3.12.	Dosing equipment for gas mixtures
Fig. 3.13.	Dedicated software for dosing equipment related to gas mixtures
Fig. 4.1.	Programmable stand for the preparation of a mixture of flammable gases
Fig. 4.2.	Positive voltage supply
Fig. 4.3.	Reversing the supply voltages on the coils
Fig. 4.4.	DIP switch to enable micro-steps
Fig. 4.5.	The use of TB6600 drivers for two stepper motors
Fig. 4.6.	Detail of the programmable stand to prepare a mixture of flammable gases
Fig. 4.7.	Sample bag that contains methane gas in concentration of 79% volume for the preparation of a mixture of flammable gases
Fig. 4.8.	Flammability limits for combustible mixtures-air at 25 ° C and 1 atmosphere
Fig. 4.9.	Experimental stand for visualizing the jet of air and gas resupplied through a hole
Fig. 4.10.	Results obtained with the FLIR camera
Fig. 4.11.	Results obtained using the Shadowgraph technique and the Phantom VEO camera
Fig. 4.12.	Results obtained using the Phantom camera
Fig. 4.13.	Geometry discretization network development
Fig. 4.14.	Dilution of the methane-air fuel mixture
Fig. 4.15.	The flow of gases from the dilution of the methane-air fuel mixture
Fig. 4.16.	Color contour in the dilution of the methane-air fuel mixture
Fig. 4.17.	Color contour in the dilution of the methane-air fuel mixture
Fig. 4.18.	Dilution of the methane-air fuel mixture represented by particle flow
Fig. 4.19.	Mixture of combustible gas, methane - air represented by the flow of particles

Fig. 5.1.	Schlieren arrangement based on lenses
Fig. 5.2.	The working principle of Schlieren techniques
Fig. 5.3.	Schlieren configuration based on parabolic mirrors
Fig. 5.4.	Schlieren configuration based on parabolic and plane mirrors
Fig. 5.5.	Complex configuration based on parabolic and plane mirrors
Fig. 5.6.	Simple configuration with a parabolic mirror and a half mirror
Fig. 5.7.	Configuration with lens and background screen
Fig. 5.8.	Simple setup with a single lens and band pass filter
Fig. 5.9.	Laboratory setup with Schlieren techniques
Fig. 5.10.	BOS operating principle
Fig. 5.11.	Standard configuration when using the BOS method
Fig. 5.12.	Shock waves created by a supersonic machine and visualized using the BOS method
Fig. 5.13.	BOS method in the laboratory
Fig. 5.14.	Settings for the Shadowgraph a) and Schlieren b) methods
Fig. 5.15.	Principle diagram of the stand for carrying out physical experiments
Fig. 5.16.	The difference in density (warm air and cold air) visualized by the Schlieren effect
Fig. 5.17.	The experimental stand for performing gas explosions using Schlieren techniques
Fig. 5.18.	Deployment of high-speed cameras for simultaneous recording of explosions
Fig. 5.19.	Explosion chamber
Fig. 5.20.	The image of the flame front, obtained by the conventional video technique
Fig. 5.21.	Images of the flame front, obtained by superimposing the images obtained by the two techniques
Fig. 5.22.	Plot of flame front speed versus distance from the spark location
Fig. 5.23.	The HICATT image intensifier
Fig. 5.24.	Mounting the image intensifier on the high-speed camera
Fig. 5.25.	Image Intensifier Control Unit
Fig. 5.26.	Image Intensifier Connections
Fig. 5.27.	PC connection with Image Intensifier Control Unit
Fig. 5.28.	The Corona effect
Fig. 5.29.	Initiation of the air-methane mixture through the Corona effect

Fig. 5.30.a	Transparent stand with shutter provided at the end of the transparent explosion chamber
Fig. 5.30.b	The obturator provided at the end of the transparent explosion chamber
Fig. 5.31.	Flame front behavior at a concentration of 9.5 % volume of methane
Fig. 5.32.	The behavior of the flame front in the physical experiment and in the computer simulation at the beginning of the explosion process
Fig. 5.33.	Flame front behavior in physical experiment and computer simulation during the explosion process
Fig. 5.34.	Transparent stand for the purpose of initiating the explosive mixture
Fig. 5.35.	Schlieren setup used in electric spark initiation
Fig. 5.36.	Initiation of the air-methane mixture by electric spark
Fig. 5.37.	Mechanical spark generator
Fig. 5.38.	Initiation of air-hydrogen mixture by mechanical spark
Fig. 5.39.	The Corona effect generator
Fig. 5.40.	Initiation of the air-methane mixture through the Corona effect
Fig. 5.41.	The Corona effect generator
Fig. 5.42.	Ignition of a small volume of methane in open space
Fig. 5.43.	Initiation of the air-methane mixture through an open flame
Fig. 5.44.	Initiation of the air-methane mixture through an open flame, a match
Fig. 5.45.	Initiation of the air-hydrogen mixture through hot surfaces
Fig. 5.46.	Initiation of air-hydrogen mixture by electric arc and visualization with Schlieren technique
Fig. 5.47.	Initiation of air-hydrogen mixture by electric arc and visualization with Shadowgraph technique
Fig. 5.48.	Initiation of air-hydrogen mixture by electric arc visualization with BOS technique
Fig. 5.49.	Initiation of air-hydrogen mixture by electric arc visualization with Schlieren technique

LIST OF TABLES

TABEL	SPECIFICATION
Table 1.1.	Similarities of concentration calculations
Table 1.2.	Specifications for wet test measuring instruments
Table 1.3.	Characteristics of the flow on the materials for the manufacture of floats
Table 1.4.	Molecular correction factors
Table 1.5.	Presentation of the accuracy of a homogeneous mixture of five gases
Table 2.1.	Characteristics of methane gas
Table 2.2.	Characteristics of propane gas
Table 2.3.	Characteristics of isobutene gas
Table 2.4.	Characteristics of dimethyl ether gas
Table 2.5.	Destruction due to overpressures caused by explosion
Table 2.6.	Damage to the human body as a result of exposure to the overpressure of the explosion
Table 3.1.	Composition of explosive test mixtures suitable for a safety factor of 1.0
Table 3.2.	Composition of explosive test mixtures suitable for a safety factor of 1.5
Table 3.3.	Compositions of explosive mixtures corresponding to safety factor 1.0
Table 3.4.	Compositions of explosive mixtures corresponding to the safety factor 1.5
Table 4.1.	Parts of the programmable stand for gas mixtures
Table 4.2.	Driver TB6600 specifications
Table 4.3.	Micro steps settings
Table 4.4.	Settings for current control
Table 4.5.	Settings used for the programmable mixture stand
Table 4.6.	LIE and LSE values created with the programmable gas mixture stand
Table 4.7.	Stoichiometric concentrations for different fuel-air mixtures
Table 4.8.	Results from the multi gas detector
Table 5.1.	Default components used in the programmable stand for gas mixtures

INTRODUCTION

Gas mixing systems are equipment used to mix two or more gases in a controlled manner. These systems comes in a wide range of industries, including chemical processing, semiconductor manufacturing and biotechnology.

One of the common applications of gas mixing systems is in semiconductor manufacturing. In this industry, it is important to obtain a precise and consistent gas mixture to ensure the production of plaque (thin plaques, made of semiconductor material such as silicon, and used as a substrate for the manufacture of integrated circuits and other electronic devices) of high quality. The process of producing them requires a controlled mixture of gases such as hydrogen, argon, nitrogen and methane. The gas mixture used to create a plasma that deposits a thin layer of material on the surface of the plaque.

Another application for gas mixing systems is in the chemical processing industry. In this industry, gas-mixing systems create various gases that generates a specific chemical reaction. For example, in ammonia production, nitrogen and hydrogen gases mixed in a reactor to form ammonia. This reaction is extremely exothermic and requires precise control of the gas mixture to avoid accidents.

In the biotech industry, gas-mixing systems used in fermentation processes to control the environment inside the fermenter. These systems combines gases such as oxygen, carbon dioxide and nitrogen to maintain the optimal environment for the microorganisms used in fermentation.

Gas mixing systems are typically composed of several components, including gas flow meters, regulators, valves, and control systems. Gas flow meters measure the flow of each gas, while regulators comes to control the pressure of each gas. Valves control the flow of each gas and the control system coordinates the operation of other components.

There are several types of gas mixing systems available, including batch systems, continuous systems, and semi-continuous systems.

• Batch systems are types of processing systems in which a fixed quantity of materials or substances processed sequentially in a series of defined steps. In a batch system, the operator add all raw materials required for a process at the beginning, the process is completed, and the final product is obtained before another batch is processed. These systems are frequently used in various industries, including chemical, pharmaceutical, food, and materials processing. Operators use batch systems to mix a fixed amount of gases in a single process. These batch systems offer the advantage of a fixed quantity, whereby a fixed quantity of materials are required in a single production process and flexibility by changing process parameters between batches, and quality control by processing each batch separately.

• Continuous systems are types of processing systems where materials enter a process and transform into finished products through a continuous flow, without stops between batches or cycles. In such a system, operators continuously feed raw materials into the processing equipment, and the final product exits continuously as it passes through each processing stage. These continuous systems mix gases continuously.

• Semi-continuous systems combine the two approaches, where a fixed amount of gas is mixed, but the process repeats multiple times. These semi-continuous systems integrate elements from both batch and continuous systems. In such a system, certain stages of the process operate continuously, while others run intermittently or in batches. This type of system provides the flexibility of batch systems and the efficiency of continuous systems, adapting to the specific needs of the process.

Importance and necessity of the Topic. Objectives and Structure of the Thesis

Thesis Objective

The primary objective of the doctoral research focuses on a completely new methodological approach to the analysis of gas mixing systems, with the aim of developing and implementing a gas mixing system in laboratory activities to support the conduct of controlled physical experiments. The intended outcome involves the formation and use of gas mixtures within the explosiveness limits specific to each type of gas introduced into the gas mixer.

Specific Objectives

Identify the specific constructive elements of gas mixing systems.

Dimension a gas mixing system.

Perform mathematical analysis for controlling the dosage of each type of gas used in the mixer.

Identifying the specific features of the control objectives necessary in the construction of the gas mixer.

Development and experimentation with the gas mixer by supplying known gases and brought to desired concentrations.

Thesis structure

The doctoral thesis begins with an introductory section that outlines the importance, purpose, and objectives of the research. The main body includes five chapters that detail the scientific approach, along with an appendix, making up 150 pages. The work features 103 figures, 26 tables, and a list of bibliographic references cited throughout. The thesis systematically presents the author's research, covering results from the documentation phase, mathematical calculations for optimizing gas mixture dosing, experimentation procedures, data interpretation from measurements, and design aspects. The author constructs the thesis as a cohesive unit based on case studies and concludes with results from using the gas mixer developed by the author in controlled laboratory experiments.

In **Chapter I**, titled "**Current state of research on explosive mixtures**" presents the principles of gas mixture formation and the fundamental laws of gases. The chapter covers the equipment for flow and volume measurements and describes static systems for producing explosive mixtures. It also examines systems for producing gas mixtures at atmospheric pressure. Additionally, the chapter presents volume measurements by highlighting intermediate and secondary standards. This chapter aims to derive, organize, and correlate the important fundamental relationships that exist in both pure gases and mixed gases.

Chapter II, titled **"Theoretical aspects of the characteristics and parameters of explosiveness of air-flammable gas mixtures"** focuses on a study of estimating explosion pressures resulting from the combustion of explosive mixtures. The chapter establishes the mathematical framework needed to determine the airflow required underground, particularly at the work front. Burning rate and explosion intensity depend on several factors, including the composition and concentration of reactants, ignition source, the size and shape of the mixture, and the presence of obstacles or features that induce turbulence in the mixture. Additionally, the presence of oxygen is crucial for combustion to occur, as reactions require oxygen to generate heat, pressure, and gases.

It is important to highlight that running a specialized program resulted in an explosion pressure of 78 mbar for turbulent-free burning. According to details on damage from overpressure explosions, this explosion pressure causes deformation and movement of corrugated metal panels and

projects wooden panels of houses outward. In the analyzed case, the maximum explosion pressure produced low-intensity dynamic effects, such as damage to some drywall partitions.

The **Chapter III**, titled **"Laboratory techniques for creating explosive/gaseous mixtures"** begins with an introduction summarizing the law of partial pressures. The main section of the chapter focuses on methods for creating explosive mixtures using laboratory equipment from INCD INSEMEX Petroşani. This includes a gas mixing setup with an initiator, a dosing system with a digital dispenser for preparing mixtures, and a laboratory system for analyzing oxygen in combustible gases.

In Chapter IV, titled "Design and experimentation of an automatic gas mixing system" the chapter briefly presents the design of a programmable gas mixer. This mixer is necessary for preparing mixtures of flammable gases (explosive or toxic) to obtain mixtures at concentrations within the explosiveness range, between the lower explosive limit and the upper explosive limit for combustible gases, or within pre-established limits for alarm purposes, corresponding to percentages of the lower explosive limit or the lethal dose limit. The system operates with an accuracy of 0.1% volumetric fractions, using the principle of mixing two volumetric flows controlled by a programmable microcontroller. Gases are stored and transported at atmospheric pressure through cylindrical injectors with a capacity of 10 liters, an internal diameter of 10 centimeters, driven by stepper motors, so the gas circuit does not include valves.

At the end of the chapter, the experiment involved testing the automatic system with electric control for preparing flammable gas/air mixtures, using both methane and hydrogen. The tests achieved concentrations ranging from the lower explosive limit to the upper explosive limit, starting from 5% volumetric methane up to 15% volumetric methane.

Chapter V, titled "**Computerized simulations of explosions of explosive mixtures in glass tubes**" focuses on gas explosion events, both in private and domestic settings. The chapter includes a technical analysis of the factors that led to these events. Identifying the causes of the event involves determining the likely source of initiation for the explosive mixture, discovering the source of the combustible gas, and analyzing how the mixture formed. Due to the geometric complexity of the space where the explosion occurred, the incident, reflected, or composite shock waves generated by the explosion can create an event footprint that questions the location of the initiation source. Based on the possible sources found on site, researchers must conduct analyses using finite element and volume methods. The factors considered in the computerized simulations include the geometry of the space, the nature of the combustible gas leak, its dispersion, and the resulting thermal and mechanical effects. The Computerized Simulations Laboratory at INCD INSEMEX Petroşani conducted the analyses and simulations in this chapter.

In Chapter VI, titled "Conclusions, personal contributions, and future research directions" The discussion highlights the most important results from analyzing theoretical concepts, models, approaches, case studies, and experimental research. The author emphasizes contributions to the doctoral research on two interrelated and interdependent levels: the theoretical level and the practical level, with a focus on how these results apply in practice. The final part of the chapter outlines several future research directions that could enhance understanding and knowledge in the development, programming, and experimentation with gas mixing systems. This chapter synthesizes the conclusions and explicitly states the contributions to the field of research addressed.