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CHAPTER 1: CURRENT TRENDS AND MOTION CAPTURE
TEHCNOLOGIES - LITERATURE REVIEW

This chapter presents the state of the art of motion capture technologies with focus on
wearable systems and methods to capture human motion. Wearable motion capture devices have
been on the rise because of their mobility and simplicity in use and have a high recognition rate of
human gestures through feature extraction and dimensionality reduction. These advancements
have a lot of impact on the automation of industries and the validation studies of the users.
However, problems like power supply constraints and sensor design issues are still present and the
future work is devoted to the implementation of such systems into robotics and optimization of
the sensor designs for further enhancement of real-time interactive systems and industrial
applications.

Wearable biomarkers are also presented as effective means of monitoring the advancement
of neurodegenerative diseases. It is possible to use machine learning to analyze the data obtained
from the full-body motion capture suits to create digital biomarkers, which could potentially
shorten the clinical trials period for the diseases that develop slowly. But there are still some issues,
namely in the development of more effective methods for monitoring biomarkers and in the use
of wearable biomarkers in clinical trials.

This chapter also includes the comparative studies that have shown that wearable sensor
systems can capture gait cycle movements with high levels of accuracy, indicating their
applicability for accurate gait assessment. However, issues like placement of sensors and the
technologies which are currently available remain as some of the challenges, though current
research focuses on the reduction of the number of sensors while trying to achieve high accuracy.

Besides the wearable devices, the document also discusses about the non-wearable sensor
systems as well. New approaches have been proposed to improve the accuracy of motion capturing
such as, automatic methods using depth and RGB data from Kinect sensors that can capture human
movements even with occlusion. Optical motion capture has also been used to assess its
applicability in intuitive robot programming and performance assessment of industrial tasks.

The incorporation of deep learning frameworks into motion capture systems has improved
the estimation of human motion to a large extent. Such frameworks tend to be more effective than
conventional methods since they apply probabilistic models that combine statistical inference and
knowledge. Low-cost marker-based motion capture systems have also been proved to be effective
in capturing human body movements and there are algorithms to reduce the impact of soft tissue
artefact.

There are some benefits of marker-less motion capture systems as compared to traditional
marker-based systems, these include the use of algorithms and deep learning for body position and
orientation estimation. Such systems have been observed to provide accurate estimation of joint
position and segment angles, thus being ideal for clinical and research purposes.



In general, the modern technologies of motion capture have expanded the opportunities to
analyze human movements with higher accuracy and with less time consumption. Nevertheless,
further studies are required to tackle the existing problems, to find new possibilities of the
application of these systems, and to improve their stability and usability. The combination of
motion capture technology with machine learning and artificial intelligence has a very promising
future where new opportunities for real-time interactive systems, clinical trials, and industrial
applications can be created.

CHAPTER 2: FOUNDATIONS AND METHODOLOGIES FOR GAIT
MOTION CAPTURE USING ACCELLEROMETRIC SENSORS

Chapter 2 focuses on the development, execution, and evaluation of a gait motion capture
system. This system, therefore, employing accelerometric sensors and an Arduino board, seeks to
provide a cheap, transportable, and accurate approach to gait assessment, suitable for
biomechanics, healthcare, sports science, and rehabilitation.

In the first section of the chapter, the authors describe the experimental setup and the
system integration where the main objective was to create a working and precise gait capture
system. This system combines 6-axis accelerometric sensors with an Arduino board to capture
precise gait information with emphasis on factors such as stride length, stride time and the angles
of the joints involved. Some of the hardware components which are incorporated include the
Arduino Uno R3 board, a Serial Port Expander, while software components include MATLAB
Simulink for real-time data processing and visualization. Accelerometers were attached to the
pelvis, thighs, shins, and feet with the aim of obtaining full motion data of the lower limbs. In order
to measure the walking speed, participants walked at a comfortable speed in a hall with no
distractions, and trials were taken several times to ensure validity of the results.

The hardware was constructed in a very neat manner; the sensors were firmly strapped on
the body and connected to the Arduino board through the Serial Port Expander. The Arduino board
was programmed for the initial setup of the sensors, sensor reading and preprocessing of data and
sending it to MATLAB Simulink for further processing and visualization. Static and dynamic
calibration procedures were effectively performed to guarantee the reliability of the sensors. The
experiment proved that the system is accurate, reliable, and easy to use by the participants
expressing comfort during the use of the system.

The chapter also explains the hardware design where the accelerometric sensors are used
for measuring linear acceleration as well as the angular velocity. The sensors were mounted on the
body in a way that would allow capturing of key gait movements and the Serial Port Expander was
important in handling data from several sensors. Correct wiring and connection were critical to
data transmission and data security while frequent calibration was important for maintaining
accuracy in the long run.

The IMU software design is described in detail including the integration of the sensors,
data acquisition, processing and real-time analysis. MATLAB Simulink was selected based on the
fact that it supports real-time data processing, is user-friendly and has numerous tools to help in
the project. The design of the software entails effective data acquisition, noise reduction,
calibration, and real time data display hence improving the system performance.



The chapter is concluded with the discussion on the experimental setting, where the focus
is made on the integration of modern sensor technology with microcontrollers, the cost and
portability of the system, and the potential for further development of gait analysis. The experiment
proved that it is possible to use cheap and easily obtainable technology for high-level gait analysis
with the future upgrades of the application likely to include machine learning for the automatic
recognition of gait patterns. In conclusion, the system is a useful tool for the researchers, clinicians
and other persons who are interested in gait analysis due to the modularity and scalability of the
system and due to the possibility for further improvements.

CHAPTER 3: ADVANCED DATA MANIPULATION TECHNIQUES
FOR OPTIMIZING IMAGE DATASETS IN NEURAL NETWORK
TRAINING

Chapter 3 is the in-depth discussion of the image data manipulation methods focused on
the image data sets for neural network training. This chapter discusses the extraction of frames
from the video files all the way to the resizing of the images to a format that is suitable for training
of the complicated neural networks such as ResNet-50 and GoogLeNet.

The chapter starts with the discussion of the fact that data manipulation is crucial in the
training of a neural network. The main reasons include data harmonisation and standardisation,
image quality, reduction in data redundancy, and robotic approaches that ease the process and
reduce human interference.

The first process is frame extraction, which involves extracting different frames from
video files using Python scripts that are supported by OpenCV. These frames are stored as PNG
files and the script provides information on the extraction process and guarantees that all moments
from the video are covered.

After that, the chapter explains color temperature adjustment, which is necessary for
bringing images to a standard temperature of 6500K, which is most suitable for CNN training. The
process includes working out the original temperature of each image, convert Kelvin values to
RGB and using these values to correct the color balance.

Another technique explained is background blurring where the background of the image
is blurred to make the foreground stand out or the human subjects. In this process, Mediapipe’s
segmentation model is used to generate masks for the human bodies and the background is blurred
using Gaussian blur while the foreground is kept sharp to provide focus on the features important
for neural network training.

Skeleton drawing with inverted colors and fringes is one of the techniques that can be
applied to emphasize the outline of human body. In this step, human landmarks are detected,
colour inversion is done on the skeleton and fringes are added to make the features more
distinguishable to the neural network. This technique employs Mediapipe’s pose estimation for
the identification of landmarks and appends white, black, and red fringes to the skeletons.

The chapter also involves resizing images depending on object detection using YOLOVS,
a model that detects and crops images around people, on the content of interest. This helps in



preserving the relevant sections of the images and removing the unnecessary background besides
aiding in the standardization of the dataset for neural networks.

The last resizing is done with the help of the Pillow library, which brings images to the
necessary dimensions for neural networks (for example, 400x400 pixels). This step is important
to make sure that the size of the inputs in the dataset is standardized to make training and evaluation
easy.

The last step is redundancy removal where the Structural Similarity Index (SSIM) is used
to compare images within a directory and delete the similar images based on a similarity index.
This process helps to remove the similar images from the dataset and thus make the dataset more
efficient and diverse.

The chapter ends with the brief recap of the whole data manipulation process starting from
the frame extraction up to the final resizing and stressing on the role of each stage in building a
solid dataset for the training of the neural network. It also points out the systematic way to
guarantee that the images are of high quality, unified and prepared for more complex neural
network architectures.

CHAPTER 4: COMPARATIVE ANALYSIS OF CURSIVE POSE
ESTIMATION MODELS

Chapter 4 of the thesis aims at giving a comparative study of different pose estimation
models with special emphasis on ResNet-50 and GoogLeNet. The first goal is to evaluate the
performance of the given models in terms of the binary classification of poses as “CORRECT” or
“INCORRECT?”. The chapter also contains information about the approaches applied for training
and testing of these models, the measures used for their comparison, as well as the conclusions
made.

The models were trained in different configurations, namely single CPU, multiple CPUs,
single GPU and multiple GPUs. In each of the configurations, the training process was observed
based on accuracy, loss and time taken. The evaluation measures used were accuracy, precision,
recall, F1 score and the confusion matrix.

Single CPU training for the ResNet-50 model was done, and it took about 81 minutes,
with a high validation accuracy of 94. 53% with small overfitting. Multiple CPU training was
further carried out to 86 minutes with validation accuracy of 92. 58%. Training with single GPU
has further decreased the training time to 11 minutes with the validation accuracy of 97. 27%. The
training with multiple GPU took about 14 minutes to train and the validation accuracy achieved
was 96. 88%. The findings also pointed out that training with the GPU, particularly with multiple
GPUs was the most efficient in terms of speed and accuracy.

The specifics of the analysis for ResNet-50 were presented by training curves, confusion
matrices, and other metrics such as recall, precision, and F1 score. Single CPU training depicted
a progressive rise in the training accuracy to 94. 53% with low and stable validation loss. From
the confusion matrix, it was observed that the model had a perfect accuracy for the “CORRECT”
class and high recall for the “INCORRECT” class. Same trends were observed with multiple CPU
training, though it had slightly lower validation accuracy. The single GPU training provided the



best and fastest learning rates with the highest validation accuracy and the best metrics consistency.
Both multiple GPU training yielded high accuracy and fast training time, thus showing the benefits
of parallelism.

Single CPU training of the GoogLeNet model was about 94 minutes and the validation
accuracy was 92. 97%. Training on multiple CPU also did not differ much with stable training and
validation metrics. With single GPU training, the time was brought down to 13 minutes with
validation accuracy of 93. 36%. Multiple GPU training also took approximately 14 minutes while
the validation accuracy was 92. 97%. The model’s scalability was good across different
configurations, though GPU-based training was much more time efficient.

The training process of Googl.eNet was illustrated by graphs of training process, confusion
matrix, and performance. Single CPU training was observed to increase in accuracy and was
relatively stable at 93-94%. The confusion matrix analysis showed high level of precision and
recall especially for the “INCORRECT” class. The multiple CPU training kept the accuracy and
loss curves at par with each other suggesting proper learning. Single GPU training showed fast
learning and high validation accuracy and at the same time, multiple GPU training allowed for
efficient training with high robustness.

In conclusion, Chapter 4 focuses on the necessity of computational resources in training
the pose estimation models. The use of GPUs in training especially with multiple GPUs results in
increased training speed and better model performance. It was also observed that both ResNet-50
and GoogLeNet models yielded high accuracy and were less sensitive to changes in the
hyperparameters for binary classification tasks in the pose estimation. The chapter is useful in
understanding how one can choose the right training methods depending on the resources available
as well as the project’s needs.

CHAPTER 5: CONCLUSIONS, CONTRIBUTIONS AND HILIGHTS

Chapter 5 is a summary of the thesis, discussing the developments and uses in motion
capture technologies, and emphasizing the increased improvement in both wearable and non-
wearable devices. Wearable motion capture devices, which are getting more appreciation for their
high level of accuracy in human gesture recognition, are widely applicable in areas from user
verification to industrial automation. Some of the challenges that have been identified include;
power supply constraints and sensor design drawbacks, but further research is anticipated to
counter these problems especially in the integration of these systems with robotics and improving
their real-time interactivity. The thesis also focuses on the possibility of using wearable biomarkers
for the diagnosis of neurodegenerative diseases, which will help to increase the accuracy of
diagnostics and shorten the time of clinical trials.

Non-wearable sensor systems have also been developed to a significant level especially
with the incorporation of depth and RGB data from Kinect sensors and the emergence of deep
learning frameworks to predict human arm movements. These innovations offer better coverage
and precision of motion tracking, including cases in which occlusions occur. The combination of
IMUs with motion capture systems has enhanced the accuracy of these systems and they are used
in areas such as robot teaching and industrial analysis.



It has been established that marker-based motion capture systems are affordable substitutes
for commercial systems in capturing human movements from distinguishable markers and human
body models. These systems are especially beneficial in clinical and sports medicine settings
because of algorithms that are employed to reduce effects of soft tissue motion. On the other hand,
markerless motion capture systems, which use sophisticated algorithms and deep learning
algorithms, have the following advantages in terms of joint position and segment angles’
measurement without using markers.

This thesis focuses on the fusion of motion capture technologies with artificial intelligence
and machine learning; a field that has allowed for further understanding of intricate human
movements with higher precision and in real-time. This integration is expected to change
numerous fields such as healthcare, sports and entertainment by offering better understanding of
human biomechanics and enhancing individualized approaches.

In industrial automation, motion capture technologies are poised to improve performance
and safety by allowing robots to interpret and mimic human movements, which may decrease the
time and skills needed for automation procedures. The use of these technologies in VR and AR is
also promising since they provide more engaging experiences that are suitable especially in
gaming, training, and remote collaboration.

In the medical field, the motion capture technologies can provide accurate and quantitative
data of human motion, which can facilitate the diagnosis and treatment of musculoskeletal diseases
and help the rehabilitation process. They are also useful in monitoring disease rates and the impact
of interventions, which may help to shorten the duration of clinical trials and their expenses.

The thesis finishes with the call for further research on the motion capture technologies as
these innovations can be applied in numerous fields such as manufacturing process automation,
health care, etc. The use of motion capture system is expected to grow in the future because of
advancement of sensor technologies that make them cheaper to use in future developments.

FUTURE ENHANCEMENTS

Future development of this technology is important to overcome some of the challenges
that are facing the development of sensors today including; the design of the sensors, the energy
source, and sensitivity. These challenges can be solved by creating more energy efficient sensors
and incorporating more sensors to get more physiological data, expanding the usage in health care,
sports and physical rehabilitation. The motion capture systems can be enhanced by extending the
use of machine learning, especially through the use of RNNs algorithms for accurate classification
of different motion patterns. These models could be fine-tuned with new data and would be more
effective in different environments if trained continuously.

Applying motion capture technologies in AR/VR provides new opportunities for
interaction, while improvement possibilities are aimed at developing less invasive systems that
would increase the comfort of interaction. This could extend to the areas of entertainment, training
and remote equipment operation. Future advancements in the medical industry may integrate
motion capture with wearable biosensors to improve diagnostics and treatment evaluation, which
may shorten the trials and improve patient-tailored treatment. To capture these benefits, it is
necessary to standardize data acquisition and processing since the application of a common
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framework for image data preprocessing, detection, and analysis is beneficial for the data quality
and homogeneity that is essential for machine learning model development and use.
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