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INTRODUCTION 

A brain-computer interface (BCI) is a hardware and software-based communication 

system that allows a computer or external device to be controlled solely on the basis of brain 

activity. The main objective of BCI research is to provide a communication pathway for 

people with disabilities who are totally paralyzed or "blocked" due to neuromuscular 

neurological disorders, such as: amyotrophic lateral sclerosis, stroke or spinal cord injuries. 

Here, we review the current state of BCI systems, looking at the different stages that make 

up a standard BCI system: signal acquisition, signal preprocessing or processing, feature 

extraction, classification, and control interface. The advantages, disadvantages and latest 

advances are discussed below, and numerous technologies related to the scientific literature 

are analyzed in order to design each stage of a BCI system. First, the present research 

examines the neuroimaging modalities used in the signal acquisition stage, each of which 

monitors a different functional activity of the brain, such as electrical, magnetic or metabolic 

activity. Second, the present research analyzes different electrophysiological control signals 

that determine users' intentions that can be detected in brain activity. Third, the present 

research looks at some techniques used in the signal processing stage to treat artifacts in 

control signals and improve performance. Fourthly, a series of mathematical algorithms used 

in the stages of extraction and classification of features that translate information from 

control signals into commands used in the operation of a computer or other device are 

studied. Finally, this research aims to provide an overview of the different applications that 

use a BCI system to control a wide range of devices.  

In chapter 1 we have made an overview that explores the possibilities of using Brain-

Computer Interfaces (BCI) technology and that deals with the fundamentals and essential 

components necessary for the design of such a system, exploring the implications from 

signal acquisition to the control interface. The types of measurable brain activity are covered 

in detail, including electrical, magnetic, and metabolic activity, with an emphasis on 

electroencephalography (EEG) due to functional advantages. Also, a detailed analysis is 

provided to the main techniques of processing and extraction of the features, as well as the 

main types of artifacts that contaminate brain signals, with special attention being paid to 

the main approaches to their elimination. 
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In chapter 2 we have made a detailed description of some efficient algorithms, used 

for the classification of motor images and, in particular, for the problem of preprocessing 

EEG signals, which are based on machine learning, used to be able to efficiently interpret 

and classify brain signals from various applications. In this regard, the significant expansion 

of the main BCI applications was also described, covering areas of interest, such as 

rehabilitation by treating severe communication disabilities, restoration of motor function, 

device control and use in video games. All these have the role of demonstrating the potential 

of this technology in improving the quality of life of people with disabilities, but also to open 

new horizons of interaction for healthy users.  

In chapter 3 we conducted a case study meant to analyze and determine the resulting 

brain model for three subjects for mental training of a relaxation condition, of a mental 

command, dependent on the user's level of attention, as well as for the intentional operation 

of the learned command. As a method of acquisition, the electroencephalogram is used, using 

a neural helmet type device provided with five EEG channels. EEG data is preprocessed and 

analyzed in MATLAB with the EEGLAB tool, applying independent component analysis to 

separate useful signals from artifacts, and using a deep learning algorithm to classify brain 

activity. Each subject goes through a mental training whose intervals are recalculated and 

displayed by a four-step algorithm written in Python, including neutral state, mental 

command, intentional action, and validation steps. 

In chapter 4 we developed and implemented a control system of a mini drone, based 

on the brain-computer interface (BCI), combining two related and topical technological 

fields in a single practical application with practical applicative potential, capable of using 

only the user's brain signals as inputs, obtaining an intuitive control of the drone. The entire 

ecosystem of the drone was mathematically modeled, simulated and tested in real flight 

conditions, in order to validate the efficiency of the BCI system implemented. 

In chapter 5 we made and developed a series of applications that use the brain-

computer interface to control both video games, robotic platforms and the main couplings 

that make up the joints of a spider robot, designed and 3D printed. We started from a video 

game called Mental Pool Game, controlled by the Emotiv Insight neural headset, which uses 

the motor imagery paradigm and then developed a BCI interface capable of using the 

electromyography signals detected by the electroencephalogram signals, using an OpenBCI 

headset with 16 EEG channels, redesigned to control 2 servomotors of the Lego robotic 

platform. Using a NextMind headset, intended for monitoring the visual cortex, we used the 

steady-state visual potential (SSVEP) paradigm to drive the spider robot's servo motors.  
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CHAPTER 1 

BRAIN COMPUTER INTERFACES (BCIs)  

Introduction 

Brain-computer interfaces are advanced command and control technologies that by 

their nature create a bridge between the human user's brain and the external device whose 

inputs they operate. 

The current chapter aims to address the technology underlying brain-computer 

interfaces, exploring the fundamentals, conceptual description and implementation of the 

essential components specific to any BCI system. To begin with, I describe the types of brain 

activities that can be measured. They also describe the types of approaches specific to a BCI 

system, in terms of their functional nature. For each of these types of activities that can be 

measured, I present the main measurement techniques. I also present the main methods of 

brain signal acquisition, with emphasis on electroencephalography, along with the 

description of the related advantages, but also on other neuroimaging techniques.  

Also in this chapter, I present the techniques for processing and extracting the 

characteristics present in BCI systems, but also the main types of artifacts that contaminate 

the useful activity of the brain. 

 

Objectives 

The representative objectives of the chapter are: 

• Definition and explanation of the concept of brain-computer interface; 

• Analysis and presentation of the main types of brain signals that are used in BCI 

systems; 

• Immersion in exploring and describing the main methods of processing brain signals 

and extracting features that are used in BCI systems; 

• Addressing and removing artifacts from BCI systems.  

 

The brain-computer interface (Brain-Computer Interface = BCI), also known as the 

brain-machine interface (Brain-Machine Interface = BMI), is a hardware and software-based 

communication system that allows people to interact with the environment solely on the 

basis of control signals generated from brain activity using the principle of 

electroencephalogram (EEG).  

The idea of successfully deciphering thoughts or intentions based on brain activity 

using BCI technology has not been sufficiently exploited in previous scientific research. 

Studies in brain research have usually been limited to analyzing neurological disorders in 

clinics or exploring brain functions in the laboratory. The design of BCI has long been 

considered too complex, due to the resolution and reliability of the information that can be 

detected in the brain, but also because of the high variability.  
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The BCI research field is a relatively young multidisciplinary field, which integrates 

researchers from different areas such as: neurology, physiology, psychology, engineering, 

computer science, rehabilitation and other technical and medical disciplines. As a result, 

despite notable progress, a common language has not yet emerged and existing BCI 

technologies vary, making it difficult to compare and harmonize them for standardization.  

This overview of the current state of BCI systems is structured as follows: subchapter 

1.1 discusses existing neuroimaging approaches to BCI systems, subchapter 1.2 describes 

the control signals most commonly encountered within BCI systems, subchapter 1.3 briefly 

explains certain types of BCI systems. Subchapters 1.4, 1.5 and 1.6 cover different signal 

processing methods used in feature extraction, artifact reduction and feature classification. 

Subchapter 1.7 provides an overview of the applications using the BCI system, and the main 

conclusions are presented at the end of the chapter.  

Conclusions 

Brain-computer interfaces (BCI) are the ones that allow the creation of a bridge 

between neural activity and external devices, being the main approach in neuroimaging. 

Electroencephalography remains the cornerstone of these interfaces, especially in the case 

of the non-invasive approach, both due to the factors related to the excellent temporal 

resolution offered, but especially due to the versatility of capturing brain activity for the 

clinical and research environment. However, in addition to these advantages, which make 

electroencephalography an affordable solution, BCIs using this method of signal capture 

face numerous challenges, which do not exclude the signal-low noise ratio, a profound 

susceptibility to the occurrence of internal and external noise phenomena, such as the case 

of interferences generated by the volume of skull conduction that can cause EEG signal 

degradation. Also, the presence of biological artifacts of the body located in the brain 

constitutes another challenge for the preprocessing stage.  

Regardless of the type of classification of BCIs, they are user-oriented, in order to give 

the user, the possibility of controlling devices using brain signals as a means of control, 

depending only on the user's will and attention, whether it is the presence of predefined 

choices to train the system or the presence of internal or external stimuli to produce a brain 

response evoked by them. 

 

CHAPTER 2 

BCI ALGORITHMS AND APPLICATIONS 

Introduction 

The field of BCI interfaces has seen numerous advances in the last two decades, both 

in relation to the algorithms used and in the case of signal processing and classification, but 

also in relation to the diversified range of applications to which they apply. Thus, they 

allowed the classification of motor images that use the electroencephalogram and the evoked 
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visual potentials as a foundation. Algorithms have been developed for vectors of small 

features. By taking into account the existing instances and relating to their proximity to them 

in the feature space in order to classify the new instances, the algorithm has become simpler 

and more computationally efficient. Machine learning has been used as a foundation for the 

design of most algorithms, being often used by BCI systems in the interpretation and 

classification of brain signals, for the design of algorithms for classifying brain activity 

states, in order to translate them into computer commands both in speller applications and in 

the treatment of models in multiclass systems or for the automatic detection of seizures in 

the medical field; it was also aimed at treating the spaces of large features, by identifying the 

optimal of the separation hyperplane through another algorithm to solve the problem of 

dimensionality; Another algorithm has become useful in recognizing the pattern resulting 

from the learning data inspired by the way the brain processes information.  

As for BCI applications, they are diverse and constantly expanding and cover: the 

treatment of severe communication disabilities, the restoration of motor function for patients, 

the control of household devices, the control of a means of transport for people with 

disabilities and applications in video games. 

 

Objectives 

The objectives of this chapter are: 

• Understanding and interpreting the role of classification algorithms in BCI systems; 

• Presentation and interpretation of the main types of classification algorithms;  

• Dealing with the main BCI applications. 

 

BCI is a communication system that does not require any peripheral muscle activity. 

Indeed, BCI systems allow a subject to send commands to an electronic device only through 

brain activity. Such interfaces can be considered as the only way of communication for 

people affected by a number of motor disabilities. To control a BCI, the user must produce 

different patterns of brain activity that will be identified by the system and translated into 

commands. In most existing BCIs, this identification is based on a classification algorithm, 

i.e. an algorithm that aims to automatically estimate the data class as represented by a 

characteristic vector 

The purpose of the classification stage in a BCI system is to recognize the user's 

intentions based on a characteristic vector that characterizes the brain activity provided by 

the characteristic stage. Either the regression or classification algorithm can be used to 

achieve this goal, but classification algorithms are currently the most popular approach in 

BCI systems. These algorithms are used to recognize users' EEG patterns based on EEG 

characteristics. Over the years, a great diversity of types of classifiers have been explored to 

design BCIs, including linear classifiers, neural networks, nonlinear Bayesian classifiers, 

Nearest Neighbour Classifiers, and classifier combinations.(Lotte, și alții, 2018) 

Classification algorithms have traditionally been calibrated by users through 

supervised learning using a labeled dataset.  
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For the classification of non-stationary signals, supervised learning is not optimal, but 

large datasets and long initial calibration sessions are usually required to achieve acceptable 

accuracy. Semi-supervised learning (SSL) is useful to reduce preparation time and update 

the classifier in the online session on an ongoing basis.  

In a BCI scenario where the signal associated with the subject's intentions is unknown 

and labels are not available, unsupervised learning and reinforcement learning (RL) can be 

applied for BCI adaptation. The use of machine learning techniques allowed users, who were 

unable to obtain successful feedback, to gain significant control over the BCI system.(Abu-

Rmileh, Zakkay, Shmuelof, & Shriki, 2019) 

Classifiers have to face two main problems related to pattern recognition: the curse of 

dimensionality and the bias-variance trade-off.  

The design of the classification stage involves choosing one or more classification 

algorithms from several alternatives. Several classification algorithms have been proposed, 

such as, among others: the k-nearest neighbor classifier (k-NNC), linear classifiers, Support 

Vector Machine (SVM) and neural networks (ANN).  

Currently, patients with LIS and those likely to develop CLIS are the main candidates 

for BCI. Despite the low rates of information transfer provided by the BCI, the high degree 

of disability among patients with LIS forces them to use a BCI rather than more reliable 

conventional interfaces, such as systems based on muscle activity or gaze.  

Nowadays, there are a large number of very different BCI applications, such as word 

processors, adapted web browsers, controlling a wheelchair or neuroprosthesis with the help 

of the brain and of course games.  

As a tool that performs a specific function, BCI's particular specifications correspond 

to how it performs that function. The following subsections briefly describe the applications 

of BCI, classified into five main areas: communication, motor restoration, environmental 

control, locomotion, and entertainment. 

Conclusions 

This chapter reviewed the state of the art of BCI systems by discussing the fundamental 

aspects of BCI system design. Some of the most significant objectives that have driven BCI 

research over the past 25 years were presented. It was noted that many advances have been 

made in their research. Different neuroimaging approaches have been successfully applied 

in BCI: (i) EEG, which provides signals of acceptable quality, with high portability being by 

far the most common modality in BCI; (ii) fMRI and MEG, which are proven and effective 

methods for locating active regions within the brain; (iii) NIRS which is a very promising 

neuroimaging method in BCI and (iv) invasive modalities, which have been presented as 

valuable methods to provide high-quality signals needed in some multidimensional control 

applications, such as neuroprosthesis control.  

A wide variety of signal characteristics and classification algorithms have been tested 

in the design of the BCI. Although BCI research is relatively young, many advances have 

been made in less than two decades, as many of these methods are based on previous research 
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into signal processing and pattern recognition. Many studies have demonstrated the accuracy 

of BCIs and provided an acceptable information transfer speed, despite the major difficulties 

inherent in brain signal processing. As a result, the training time of users has been 

significantly reduced, which has led to more widespread BCI applications in the daily lives 

of people with disabilities, such as, among others, word processing, browsers, email, 

wheelchair control, environmental control or neuroprosthetics. 

Despite recent advances in the field of BCI, some issues still need to be resolved. First, 

the relative advantages and disadvantages of different signal acquisition methods are still 

unclear. Clarifying them will require further studies in humans and animals. Second, invasive 

methods need further investigation to deal with tissue damage, the risk of infection, and long-

term stability problems. Electrodes containing neurotropic media that promote neuronal 

evolution and wireless transmission of recorded neural signals have already been proposed. 

Third, the electrophysiological and metabolic signals that are best able to encode user intent 

should be better identified and characterized. Most BCI studies have independently treated 

the timing, frequency, and spatial dimensions of brain signals. These signal size 

interdependencies can lead to a significant improvement in BCI performance. Fourth, the 

speed of information transfer provided by current BCIs is low to ensure efficient human-

machine interaction in some applications. BCI based on exogenous signals can provide a 

much higher yield. Fifth, unsupervised adaptation is a key challenge for the deployment of 

BCIs outside the laboratory. Some adaptive classification algorithms have already been 

proposed with moderate success. In addition to low information transfer rates and variable 

reliability, most current BCI systems are inconvenient because the electrodes need to be 

moistened, the software may require training, and the electrode contacts need continuous 

correction. An easy-to-use P300-based BCI with remote monitoring using a high-speed 

internet connection has already been proposed to reduce reliance on technical experts. 

The latest advances in BCI research suggest that innovative developments may occur 

in the near future. These achievements and the potential for new BCI applications have 

obviously given a significant boost to BCI research in which scientists from 

multidisciplinary fields have participated, among others for example, neurologists, 

engineers, mathematicians and specialists in clinical recovery. Interest in the field of BCI is 

expected to increase and the design and development of BCI will continue to bring benefits 

to the daily lives of people with disabilities. Moreover, recent commercial interest within 

certain companies suggests that BCI systems can find useful applications for the general 

population and not just for people with severe disabilities. In the near future, BCI systems 

may therefore become a new way of human-machine interaction with everyday uses, similar 

to other current interfaces. 
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CHAPTER 3 

BRAINWAVE ANALYSIS 

Introduction 

In this chapter, in the context of analyzing and determining the brain model resulting 

from mental training for relaxation, followed by the training of a mental command, but also 

of the intentional action of the latter, a case study is presented involving a scenario applied 

to three subjects. The EEG signals were acquired using a commercial neural headset 

equipped with five EEG channels. The previously recorded EEG data was stored in medical 

format and analyzed with the EEGLAB toolset in the MATLAB development environment 

to eliminate noise through a six-step preprocessing algorithm. The algorithm applied 

independent component analysis to separate useful signals from artifacts. The EEG data was 

then processed using a classifier, based on deep learning to classify brain activity separately 

from noise sources.  

For each topic, the training was recalculated and displayed using a four-step algorithm 

written in the Python programming language. Each segment of time was divided for training 

neutral state and mental command, intentional action, and validation steps. The spectral 

power density was analyzed to identify alpha and beta waves on each EEG channel, using 

an algorithm implemented in the C programming language, running in the MATLAB 

development environment. The results were plotted to determine the amplitude and 

maximum strength of the EEG signals, as well as their distribution across brain regions. 

 

Objectives 

The objectives of this chapter are: 

Implementation of an offline preprocessing algorithm of the recorded raw EEG data, 

related to a case study with 3 subjects; 

Evaluation of the impact of artifacts on EEG signals; 

Determination of the distribution of dominant brain waves; 

Comparative analysis of mental training sessions. 

 

A number of 3 volunteer subjects were chosen to participate in the experiment, aged 

between 32 and 55 years. All subjects were chosen from the category of people with a good 

state of health, coming from the same demographic environment and following a training 

cycle in higher education. The measurements were made by taking the EEG signal from the 

subjects, over several days, in the same interval of the day, namely in the afternoon, using 

the same equipment and the same development kit, Emotiv Insight, both for the acquisition 

and for the processing of EEG signals. Also, all measurements were made in laboratory 

conditions, without sources of external noise, and the subjects were instructed that 

throughout the training and imagining the consequence of a mental command not to speak 

and also not to move so as not to affect the validity of the experiment. The volunteers were 
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trained in advance to familiarize themselves with the BCI interface, each person being 

allocated a training time of 20 minutes. 

The main goal of the experiment was to determine the distribution of the dominant 

brain waves of all subjects, while following the same pattern and training process for the 

neutral condition and a single mental command, the Lift. In this regard, we aim to analyze 

the preprocessed electroencephalogram data, coming from raw data, both during its training 

and post-training at the time of imagining the trained command. 

Thus, all participants were asked to go through two training sessions individually, the 

first in which to train only the neutral condition in order to be able to analyze the spatial 

distribution of brain waves for the relaxation period, and in the second to resume its process 

in order to be able to train the mental command of lifting, both sessions being recorded 

simultaneously.  

To do this, we used the independent Emotiv Xavier TestBench application, which is 

provided by the company Emotiv Inc. in the standard application package with the purchase 

of the Emotiv Insight neural headset.  

By recording the neutral state and the mental lifting load for each subject, it was 

possible to perform a comparative analysis of the training sessions using the offline playback 

facility offered by the Emotiv Xavier TestBench application. Thus, the changes in the 

electroencephalogram signals for each of the 5 EEG channels analyzed were identified, both 

during the induction of the state of relaxation and during the training and imagining of the 

consequence of the imagined mental command, at an implicit sampling rate of 128 samples 

per second,  by applying a first-order top-pass filter on the default signals to eliminate the 

offset (lag) generated by the direct current produced by the electronic system of the Emotiv 

Insight headphones, which can only be deactivated if single-channel EEG analysis is chosen.  

In the pre-processing stage of the purchased EEG data, I chose to use the open-source 

EEGLAB toolset that can be integrated into the MATLAB development environment for 

continuous processing of electroencephalography (EEG), magnetoelectroencephalography 

(MEG), and other electrophysiological signals.  

EEGLAB was also chosen because it is developed around a simple yet intuitive 

graphical user interface that provides a smooth transition from command-line programming 

in MATLAB for custom analysis to basic graphs generated through MATLAB 

The EEG data are then prepared for further analysis with the aim of discriminating 

them according to frequency components and cleaning them of noise sources in order to 

eliminate artifacts.  

ICA training was performed at a learning rate originally set to 0.001 (Kittilstved, și 

alții, 2018). However, during training this rate is adjusted based on a threshold, which relates 

to a Delta angle that represents the angle between the direction of the vector in the weight 

space describing the current learning step and the direction describing the previous step. If 

the Delta angle is greater than or equal to 60°, the learning rate is automatically multiplied 

by 0,9, with the aim of ensuring the stability of the learning process. By calling the function 



Summary thesis   eng. Roșca Sebastian - Daniel 

 

 

15 

 

pop_runica() the EEGLAB toolkit generates in addition to the ICA weight matrix a data 

transfer matrix, which achieves a uniform distribution that is used for ICA preprocessing.  

In general, the recognition and rejection of ICs obtained from decomposition by 

applying ICA in the preprocessing of EEG sessions is a difficult step, as it is a process that 

requires time and experience to correctly understand and evaluate their properties through 

manual inspection. This is due to the complexity of the CIs, which do not have a clearly 

defined interpretation or specific order (Asogbon, și alții, 2023).  

Thus, for this step, we opted for an ICLabel classifier, which implements a deep 

learning model for the automatic recognition and removal of independent components from 

EEG records.  

As a first result of the application of the automatic classification of independent 

components, it was observed that the application of the ICA decomposition produces an 

efficient separation of the sources that make up the electrical potentials of the brain in the 

case of the analysis of the EEG data sets related to all the subjects involved in the study.  

Thus, five topographic maps, each of which are associated with a result obtained by 

ICLabel classification, indicating either the type of artifact or the signal source it represents, 

together with the label related to the percentage of confidence that determines the accuracy 

of the classification. 

 

Conclusions 

 

The first objective results in obtaining clean EEG datasets, with as many artifacts 

removed as possible following the application of the preprocessing algorithm, which allow 

an accurate analysis of individual brain activity for different mental actions, under 

experimental conditions related to each of the three subjects studied. 

The second objective results in ensuring the quality and integrity of the EEG data from 

each dataset analyzed, in the sense of maintaining a low amplitude of the residual artifacts 

after processing, in order to obtain optimal results later. 

The third objective imprints a way of identifying and comparing the distribution of the 

dominant brain waves during the state of relaxation, alternating with the installation of 

attention and concentration during the training of the chosen mental command, which is used 

as a basis for its intentional action. 

The fourth objective results in identifying and understanding the mental patterns per 

study, the commonalities between entrainment and intentional actuation, and understanding 

the differences that characterize them through EEG responses between subjects, providing 

insight into individual variability in the design process of any mental entrainment scenario 

that is used as a foundation for controlling any BCI application.  
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CHAPTER 4 

DRIVING A DRONE USING NEURAL HEADSETS 

Introduction 

This chapter presents the way in which two elements that are increasingly present 

today can be interconnected in order to create a system capable of being led by a wide 

category of people. On the one hand, drones present and integrated in various fields of 

activity, both civil and military, extended towards the approach focused on entertainment 

and the delivery of products and more recently towards the field of the future, that of 

unmanned air passenger transport. On the other hand, human-machine interfaces, being 

considered more unconventional, can be considered a niche field that offers generous topics 

that deserve to be explored both in the present and in the future. Due to these considerations 

I chose to use and develop a brain-computer interface (BCI) because it offers the advantage 

of a control that does not involve moving elements. In order to achieve this objective, we 

developed through mathematical modeling and numerical simulation both the model of a 

mini drone and the BCI interface used as a control method. 

 

 

Objectives 

The representative objectives of the chapter are: 

• Development and implementation of the brain-computer interface; 

• Mathematical modeling and simulation of drone dynamics; 

• Training and validating mental commands for drone control.  

 

I chose to use BCI technology because it allows the control of electromechanical 

devices or computers using only brain signals as a means of action. Such a BCI system is 

able to identify patterns of neural activity that, following processing, can be associated with 

machine commands. Among BCI systems, in fact, the electroencephalogram (EEG) 

technique analyzed by the non-invasive method is predominantly used to transform the user's 

conscious thoughts into command-and-control actions. 

The main motivation for the development of BCIs is to improve the quality of life for people 

suffering from disabilities generated by neuromuscular diseases, stroke, amyotrophic lateral 

sclerosis (ALS) or severe polyneuropathy . (Moufassih, Tarahi, Hamou, Agounad, & Azami, 

2022) 

The objective is to create and implement a brain-computer interface, based on the 

paradigm of motor imagination through which the user is able to control, only using a series 

of trained mental commands, the position and orientation of a mini drone in space, based on 

the implementation in the Matlab - Simulink development environment of the results 

obtained from mathematical modeling and numerical simulation. 
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The neural headset used, Emotiv Insight is a brain activity tracking device designed in 

2015 by an Australian entrepreneur, Tan Le, co-founder of Emotiv Inc., based in San 

Francisco, California. Emotiv Insight is a wireless, multi-channel, neural headset designed 

for BCI applications. 

On the other hand, the chosen four-rotor mini drone instrument used in the BCI 

experiment can be seen as a framework for testing and evaluating ideas from 

multidisciplinary fields, such as: computer science, electrical and mechanical engineering, 

to solve problems such as: real-time flight control theory, robotics and navigation. The main 

advantage of this type of device is that it is a versatile test platform, involving a relatively 

simplistic mechanical design that offers both a low purchase and maintenance cost. 

The mini drone is equipped with a Bluetooth Low Energy (BLE) module that gives it 

an operating range of 20 meters from the operator.  

For the design of the brain-computer interface we used as input the successful training of the 

neutral condition, as the basic mental state of the user. To this end, using the Emotiv Xavier 

ControlPanel development kit, we trained four classes of mental tasks using our own 

imagination as a trigger on the kinesthetic movement of the right arm, starting from the 

assumption that experiencing the same feeling with the real movement of the arm that is 

based on motor execution and combining it with the observation of an action, can induce a 

stronger brain response (Miladinović,  et al., 2020). We also benefited from visual feedback 

provided through a series of preset animations that project the movement of a virtual target 

object represented in 3D, consisting of six merged cubes, each movement being 

automatically preset according to the mental task to be trained. We have chosen the mental 

tasks so that they are intuitive and largely correspond to the movement on the axes of the 

mini drone as follows:  

• Mental lift load, shown in Fig. 4.18, used to transmit the take-off command of the 

Parrot Rolling Spider mini drone at a predetermined altitude of 1.1 m and ascent at a 

step of 0.2 m/s; 

• Mental Drop Load, which controls the reduction of altitude by a step of 0.2 m/s; 

• Mental load movement to the right (Right), which controls the turn to the right with 

a step of 0.05 degrees;  

• Mental task Left shift, which controls the turn to the left with a step of 0.05 degrees. 

Based on imagining the consequences of the mental command for 8 seconds, the 

mental patterns are then associated with the command. 

Following the processing of the sequences trained through the Emotiv Xavier 

ControlPanel Interface, they are stored in binary code, they need to be converted into 

keystroke sequences that serve as inputs for the control of the mini drone in real time.  

Only for the reset command, a facial expression was chosen, namely blinking, for 

which the "occur" trigger condition was set, which will manage the pressing of the "R" key 

at each activity detection, taking into account the delay established in order to have a double 

control mechanism, having both the function of canceling previous commands and the safety 

function in case the user loses concentration.  
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By implementing a BCI-based solution integrated into the control of a mini drone, the 

steps involving the interaction between man and machine can be simplified, it is aimed at a 

large number of people, either healthy, neurological or suffering from amputations, 

according to the presentation in the section where the motivation for choosing the theme was 

described.  

Conclusions 

The first objective was to create a computer-brain interface that uses the motor imagery 

paradigm as a foundation, through which the user can control the position and orientation of 

a mini quadcopter drone, only using brain inputs based on trained mental commands. This 

goal involved using the same Emotiv Insight neural headset, which was used earlier in the 

case study, to understand the fundamentals of brain models, which underpinned the design 

of the scenario for training four classes of mental commands.  

The second objective aimed to achieve mathematical modeling and numerical 

simulation of the dynamics of the Parrot Rolling Spider mini drone, being implemented to 

optimize and validate its control through the BCI interface. This involved testing the validity 

of the model both in real flight conditions and by simulating the behavior of the mini drone 

implemented in Simulink 3D Animation. 

The third objective consisted of training the user with the aim of learning specific 

mental commands that were validated in response in controlling the direction and orientation 

of the drone for validating the effectiveness of the BCI system.  

 

CHAPTER 5 

BCI CONTROL APPLICATIONS 

Introduction 

The brain-computer interface (BCI) allows, in addition to the control of physical 

devices and virtual instruments, the recognition and transposition in real time of the user's 

intentions, using as inputs brain models recognized by mapping the user's brain. The 

continuous advancement of BCI interface technology has made it possible to develop games 

that involve the direct use of inputs from the brain to the detriment of traditional, established 

control methods. Thus, using the same BCI interface device, represented by the Emotiv 

Insight neural headset, we designed and developed a game, entitled Mental Pool Game, 

based on the user's attention and concentration in controlling the power and speed that he 

can imprint on a virtual object, in this case a white ball, specific to the game of billiards. The 

game was developed entirely within the Unity3D cross-platform game engine. 

Next is another application that presents the control of a Lego robotic platform, which 

uses EEG and EMG signals captured using a redesigned OpenBCI headset. Another control 

method, based on muscle artifacts, is used to control the direction of the Lego Mindstorms 



Summary thesis   eng. Roșca Sebastian - Daniel 

 

 

19 

 

robotic platform based on four imposed facial expressions. The section also details the 

hardware used, along with the software implementation and control interface. 

The last application is the one that demonstrates the potential of brain-computer 

interfaces, by offering new ways of interaction both in games, but especially in robotics, 

using visual potentials in a state of balance as a foundation, to control and operate the 

couplings of a 3D printed spider robot. As with the first application presented, the Unity 3D 

game engine was used for the realization and integration of the BCI interface. 

 

Objectives 

The representative objectives of the last chapter are: 

• Integration and implementation of the brain-computer interface in a 3D video game; 

• Development of a control system of a robotic platform through EEG and EMG 

signals; 

• Control of a spider robot using the SSVEP paradigm. 

Designing a BCI-controlled 3D video game 

In making this game I chose to implement and use a single neural input, based on the 

results provided by the case study of the three subjects in terms of the mental command of 

lifting. Thus, based on the same paradigms of motor imagining, also based on relaxation and 

concentration levels, we implemented another imagined movement of the human arm. It 

involves the same degree of kinesthetic awareness, as that produced in the case of flexion 

movement, generated by the shoulder joint complex, with the elbow and wrist joint fixed, 

previously used as a general idea of mental training of the lift command. For this purpose, 

the mental command "push" was chosen as an indicator of the user's power of concentration 

to control intentional spatial displacement, only through mental control, without involving 

other muscle groups.  

In designing the game we chose Unity, developed by Unity Technologies, because it 

is an open-source, cross-platform game engine.  

This game started from the idea of covering several target groups, both for healthy 

people and for people with disabilities. Especially in the case of the latter, the use of 

peripheral PC input devices, such as keyboards, mice or joysticks, could be challenging. 

Thus, the proposed method, which does not involve these classic commands, but only the 

analysis and interpretation of commands coming from the brain to control the speed of 

movement of the white ball in order to hit any of the 15 balls on the pool table, is a solution 

that aims to provide better results for all these participants.  

 In order to play the game of billiards, the user must go through 2 stages of mental 

training, similar in terms of previous activities to the way in which the neutral mental state 

and the lifting state were trained, through the Emotiv Xavier ControlPanel interface in the 

case of the quadcopter. Thus, the user initially induces a state of relaxation under the same 

conditions of maintaining a defocused/unfocused gaze and keeps the head in the same 

position for ten seconds. As for the training model for the mental command "Push", the user 
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must imagine for 9 seconds the kinesthetic complex of movements mentioned above, but 

compared to the training of the mental command of lifting, used for navigation along the "z" 

axis of the quadcopter. Thus, it is the cognitive power that the user allocates to the mental 

task that determines the variable speed of movement of the white ball on the y-axis of 

motion. 

Lego NXT Mindstorms 2.0 platform controlled by signals considered brain 

artifacts 

I developed an EEG signal capture device to control the actuation of a Lego-type 

robotic platform, which offers robustness and a low cost. In this sense, the chosen solution 

offers the advantage of unlimited use of EEG capture electrodes, without requiring the 

application of a rehydration solution or their periodic replacement, as is the case with those 

made of semiconductor polymers used by the Emotiv Insight neural helmet in the 

applications presented above. The first step in the development of the BCI interface was to 

choose an educational platform, which allows programming in a high-level programming 

language, such as C# language, but also the integration of a wireless communication protocol 

via bluetooth. From this point of view, the hardware was also chosen to correspond to an 

open-source software solution, capable of discriminating between the activity generated by 

electroencephalogram (EEG) signals and the electrical activity generated by 

electromyography (EMG) signals. The latter, although they are considered artifacts that 

contaminate the EEG signal, can be used as a direct method of brain control as in the case 

of the former, being also the objective pursued to achieve a BCI control of the Lego platform, 

based on the detection of impulses generated by facial muscles. 

To achieve direct control based on neural impulses, we used an OpenBCI headset 

whose structure was redesigned three-dimensionally based on an open-source license. The 

main objective was to provide good coverage of the selected EEG locations and a high 

degree of comfort, together with a quick adjustment of the EEG electrodes on contact with 

the scalp and providing a quick way of reconfiguration. The OpenBCI helmet thus designed 

places an array of 16 electroencephalogram electrodes, each of the dry type, which are made 

of silver chloride (AgCl), being reusable.  

To conduct the EEG signal acquisition experiment we used a development board and 

OpenBCI Cython and an OpenBCI Daisy expansion board, integrated through a PCB 

provided with gold-plated safety female connectors at , 90˚ made in the Proteus circuit 

design software. 

In order to control the Lego platform, we designed and implemented four facial 

expressions, obtained as a combined contribution of electromyography and 

electroencephalogram signals, with the advantage offered by the fact that it does not require 

time allocated to implement a workout, which uses mental commands as inputs as is the 

previous case, which involved the paradigm of motor imagery based on relaxation and the 

previously implemented concentration levels, both in the case of quadcopter control and pool 

game. 
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Thus, the four facial expressions followed that produce muscle signals (EMG) are: the 

lifting of the right eyebrow through its related muscles, the movement generated by the 

mandible through the intentional movement of its related muscles on the right side, as well 

as the movement of the other eyebrow and the mandible in the opposite direction. The 

OpenBCI interface was used to process and interpret muscle signals.  

The signal data once interpreted is converted into binary by the OpenBCI interface and 

is transmitted through the Lab Streaming Layer (LSL) system, in the form of time series to 

an application implemented with code written in the Python language, called 

PyCommand.py. This application has the role of classifying each signal obtained and 

mapping it to keystroke sequences.  

In order to receive these keystrokes, we developed and implemented an interface in 

C#, which would create a bridge between the computer's bluetooth device and that of the 

Lego platform.  

Control of a spider robot based on the BCI SSVEP interface 

In this section I propose a BCI system that uses the paradigm of visual evoked 

potentials in steady state (SSVEP) to control the motion vectors of a spider robot, designed 

and 3D printed. 

The Equilibrium Evoked Visual Potential (SSVEP), in terms of how it can be used as 

an input into a BCI system, represents the intentional act of a person's will. The potential of 

SSVEP thus constituted concentrates the spectral energy in a narrow band and depends on 

attention to modulate this energy voluntarily, which makes it suitable for use in BCI systems.  

The control application is based exclusively on the SSVEP paradigm as a way of 

dealing with the BCI interface, while it is applied to control the movement or action capable 

of expressing the interaction with the user of a 3D designed spider robot.  

From the point of view of the chosen hardware, we used an Arduino Nano V3 

development board that integrates an ATmega 328P MCU. In order not to require the design 

and manufacture of a dedicated PCB board, we used an expansion module designed 

specifically for this development board to allow PWM control. In order to be able to receive 

commands remotely, we used another Raspberry Pi Zero W development board as a 

minicomputer, as it benefits from the integrated WiFi module, making it easy to implement 

a User Datagram Protocol (UDP) communication protocol for both the client and the server.   

The BCI NextMind headset used was developed by NextMind SAS in Paris, France, 

and was chosen because it offers a number of 9 patented dry type electrodes with 

preamplifier, placed according to the same International standard 10 - 20, whose locations 

have been adapted to identify and measure the brain activity produced in the visual cortex. 

Using as a basis the NextMind SDK developed for Unity3D, we implemented the calibration 

manager that measures the user's attention as a level in relation to the response of visual 

stimuli as a reference used in the implementation of an active control.  

The resulting GUI interface, integrated in Unity, it augmented with six sphere 

(primitive) objects in order to represent inputs that generate visual stimuli used as triggers 
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for the SSVEP-BCI system. In each sphere, a NeuroTag component provided by NextMind 

is then integrated and which gives the object the appearance of a graphic overlay with 

transparency. In order for the user to be able to validate the action, we have implemented a 

prefab called TrainagleFeedback that is integrated at the level of each sphere.  

As a next step, through a script implemented in the C# programming language, the 

activations of the NeuroTag trigger are read, which has the role of acting in a similar way to 

a button that sends through the serial interface the value of the string assigned to the 

predefined command.  

The robot's predefined movements, namely the position: lifting, lowering, steps 

forward, steps back, turning right, turning left, shaking hands and clapping hands.  

In order to validate the accuracy of the BCI-SSVEP system and verify the level of 

attention required to drive the robot, but also to determine the average time spent by a user 

to familiarize himself with the mechanics of the application, three subjects were selected for 

whom mentoring actions were undertaken for 15 minutes each. Each training session was 

carried out under the same laboratory conditions similar to those brought in the case of 

training the mental command of lifting through the paradigm based on motor imagining. 

Thus, the results obtained by each participant throughout the training and the free session of 

voluntary action of the action were stored in an individual CSV file. It has the role of storing 

the level of confidence of each user manifested by the level of individual attention generated 

in response to the presence of visual stimuli. For each stored dataset, an average value of 

normalized cumulative confidence was then calculated in order to report the percentage of 

attention obtained as a result of applying a code written in Python whose implementation 

would provide a graphical representation. 

As a first result, the measured time of the first subject S1 was 157 seconds, in which 

he obtained a degree of attention expressed in a percentage of 91 %. 

And in the case of the S2 subject, a measured time of 185 seconds was recorded and 

an increased attention level of 98%. 

In the case of the last S3 subject, the  measured time reached 197 seconds and an 

attention level reported at 74%. 

Conclusions 

The first exposed objective of the chapter demonstrates the sustainability and 

efficiency of using the BCI interface in controlling a 3D video game, which simulates the 

real behavior of a pool game. It also involves the use of a realistic graphics engine, which 

provides all the necessary facilities to create an optimized graphical user interface, in order 

to reduce the time, it takes for them to get used to it. Also, the fact that a brain-computer 

interface is implemented, which uses an EEG headset to manipulate and control game 

elements using mental commands as inputs, makes the application available both for 

recreational purposes for healthy people and for rehabilitation purposes for people with 

motor impairments. 
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The second objective focuses on creating a software solution that integrates a link 

between a hardware solution that has been designed to detect both EEG signals and their 

muscle artifact (EMG) content, in order to ultimately use them to control the robot's 

movement. Thus, facial muscle movements in BCI systems based only on EEG should be 

eliminated so as not to introduce noise sources that alter the quality of the signals, in the 

current application they are used as control signals.  

The last objective integrates the navigation capabilities of a robot, with low cost, 

equipped with servo motors and controlled by an Arduino development board, with the 

possibility of neural control based only on focusing on specific visual stimuli. 

 

CHAPTER 6 

CONCLUSIONS, CONTRIBUTIONS AND DEVELOPMENT 

DIRECTIONS 

CONCLUSIONS 

 

In chapter 1 we treated brain-computer interfaces (BCI) as a main bridge between 

external devices and neural activity captured by measuring the user's electrical potentials. 

Thus, electroencephalography (EEG) is the main method, the most commonly used, for 

capturing brain signals, due to its excellent temporal resolution. However, most BCI systems 

that rely solely on EEG present significant challenges that need to be overcome, being 

susceptible to interference, disturbances and discontinuity, especially in the case of systems 

using non-invasive capture methods. The presence of biological artifacts are also sources of 

contamination that can degrade the EEG signal. Regardless of the type of BCI interface 

chosen, they all have in common the orientation towards the user for controlling the devices, 

using the interpretation of brain activity, in relation to his intention, attention and will.  

In the second chapter I reviewed the current state of the techniques used by BCI 

systems, in which I sought to point out the significant advances that have been made in recent 

decades. We have studied various neuroimaging methods, such as EEG, fMRI, MEG and 

NIRS, which have been successfully applied in the creation of the BCI interface. Compared 

to non-invasive methods, invasive methods have been shown to provide high-quality signals 

that are indispensable for complex applications, such as neuroprosthetics control. However, 

many challenges remain to be overcome in the field of BCI, including clarifying the different 

methods of signal acquisition in terms of advantages and disadvantages, investigating 

problems related to non-invasive methods, and improving the speed of information transfer. 

Recent progress in this area has shown that BCIs will continue to bring significant benefits 

in the field of rehabilitation for people with disabilities, but useful general-purpose 

applications will also be found. 

In the third chapter we described and implemented the steps necessary to obtain EEG 

datasets cleaned of artifacts, for which the main objective was to ensure their quality and 
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integrity. In addition to eliminating the artifacts, another objective pursued was to maintain 

a low amplitude in the case of residual artifacts, but also to compare the distribution of brain 

waves for various mental states. This chapter highlights the importance of understanding 

individual variability used in the design process of mental training scenarios as a way of 

controlling BCI applications.  

In chapter 4 I described how to create a BCI interface based on the motor imagery 

paradigm, which creates a bridge between the user and the keystroke sequences used to 

control a mini quadcopter drone. To achieve this goal, we integrated the BCI interface 

technology represented by the Emotiv Insight neural headset with mathematical modeling 

and numerical simulation of the drone's dynamics. The focus was also on training the user 

to learn specific mental commands, with the aim of validating the effectiveness of the BCI 

system. 

In chapter 5 we used the BCI interface in controlling a 3D billiards video game, 

demonstrating the potential of applying this technology in the virtual environment to recreate 

the real dynamics based on the laws of physics using a graphics engine capable of faithfully 

reproducing this. We also proposed and integrated an EEG and EMG-based solution to 

control the direction of movement of a robotic platform through muscle artifacts, 

demonstrating that physiological artifacts also have the potential to be used as command-

and-control inputs for external devices. We have also demonstrated that by integrating a BCI 

interface created in a graphics game engine, with a neural headset that monitors the visual 

cortex, it is possible to use a neural control based on focusing on specific visual stimuli that 

require a short period of user accommodation to control the movement of a robot.  

 

CONTRIBUTIONS 

Within the doctoral thesis, a series of contributions were made, of which I would 

initially mention those related to the current state of the approached theme, which emerge 

from the bibliographic research. 

• We made a comprehensive presentation of the current state of brain-computer 

interfaces (BCI), through which we covered all the design stages: from the stage 

of brain signal acquisition to the methods of preprocessing, feature extraction, but 

also classification and implementation of the control interface. The entire 

workflow related to the design of BCI was approached in a holistic manner, 

through which I aimed to create an overview of the current issue of integrating 

human user intent as a decision factor in the control of external devices; 

• We have conducted an in-depth examination of the main modalities used in 

neuroimaging, in order to identify the main types of control signals that can be 

used as inputs of BCIs, highlighting both the advantages and disadvantages of each 

technique;  

• We conducted and implemented a multi-subject case study to understand brain 

models for several mental states and training conditions, to use them as a 

foundation in designing the most effective BCI design scenarios, to reduce the 
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complexity and time of learning and the user's accommodation with the 

environment thus created.  

 

 

 

CONTRIBUTIONS DETAILED BY CHAPTERS 

Chapter 1: 

1. We conducted a study of the main types of brain activities, which constitute 

existing approaches related to neuroimaging in BCI systems, namely 

electrophysiological ones, which use as capture methods: electroencephalography, 

electrocorticography, magnetoencephalography and electrical signal acquisition in 

single neurons and hemodynamic ones represented by the capture methods: 

functional magnetic resonance imaging and NIR spectroscopy. 

2. We have defined the concept of electroencephalography as a neuroimaging 

modality, presenting its advantages and disadvantages, especially in non-invasive 

techniques for capturing brain signals. 

3. We have analyzed and described the invasive ways of capturing brain signals, 

describing the main specific methods in BCI research, and we have described the 

main problems that arise following microelectrode implantation. 

4. We analyzed and described the types of control signals used by BCI systems, 

including: visual evoked potentials, slow cortical potentials, P300 evoked 

potentials, and sensorimotor rhythms. 

5. We have analyzed and described the types of BCI interfaces, classified as: 

exogenous or endogenous and respectively synchronous or asynchronous, which 

are modulated to transmit information, as well as their advantages and 

disadvantages. 

6. We have described and analyzed the main methods of selecting and extracting 

features from brain signals, used for dimensional reduction, time/frequency 

analysis methods, and parametric modeling. 

7. We have described and dealt with the main physiological and technical artifacts 

present in BCI systems, as well as the main elimination approaches. 

 

Chapter 2: 

8. We have analyzed and described the main classification algorithms for automatic 

estimation of the data class, generative, linear and nonlinear modeling, used to be 

able to control a BCI system. They are essential for recognizing patterns of brain 

activity that once identified by the system are translated into commands. 

9. We have identified and analyzed the main current BCI applications used mainly 

for the medical field, for rehabilitation, but also for the civil sector, such as 

entertainment and neuromarketing. 
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Chapter 3: 

10. We designed and conducted a case study in which we trained three subjects to use 

a five-channel EEG neural headset to train a relaxation condition, used as a 

foundation for training an imposed mental command and intentionally acting it. 

11. We created a scenario whereby participants go through two mental training 

sessions, the first in which they train only the neutral condition in order to analyze 

the spatial distribution of brain waves for the relaxation period, and in the second 

to resume the process in order to be able to train the mental command of lifting, 

both sessions being recorded simultaneously. 

12. We proposed and implemented a six-step algorithm for offline preprocessing of 

EEG data, implemented in the Matlab development environment, using the 

EEGLAB toolkit, results from each recording for each of the two mental training 

sessions, in order to obtain statistically independent components to achieve a 

separation of EEG data, useful for the study,  by the artifacts that contaminate them. 

13. We have implemented a deep learning-based classifier used for the automatic 

recognition and removal of independent components from EEG records. We chose 

this classifier for its ability to predict the signal sources of the brain and the 

percentage of those of the nature of artifacts. 

14. We developed and implemented a four-step represented algorithm, written in the 

Python programming language, to manage the EEG data recorded after 

preprocessing and to represent them graphically, in relation to the intervals of 

training the neutral state, training of the mental command of lifting and intentional 

action, as well as the intervals of inter-action validation. 

15. We developed and implemented a complex spectral power density (PSD) analysis 

algorithm, written in the C programming language, to evaluate the spatial 

distribution of brain activity in the alpha and beta wave frequency spectrum for the 

imposed training scenario. 

 

Chapter 4: 

16. We have made a detailed description of the Emotiv Insight Neural Helmet BCI 

device, according to the patent study, including the technical specifications, the 

EEG sensors used, the advantages offered and the cortical locations covered. 

17. We made a presentation of the Parrot Rolling Spider mini drone used, through 

which we presented its technical characteristics and the built-in hardware 

components. 

18. We developed the mathematical model of the drone, which contains the equations 

of motion from the ground to a pole, and determined the dynamic model of the 

drone to determine the vertical traction force, gyration effect, drift moment, roll 

effect, traction force, and inertia intervals relative to the axes. These were 

implemented in a simulation in the Matlab-Simulink development environment 
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based on which to create an algorithm for driving, estimating and controlling the 

dynamics of the mini drone in real time. 

19. We carried out the implementation process of the BCI interface using as a 

foundation the process of acquisition and processing of EEG signals based on the 

Emotive development kits. 

20. We implemented the process of training and classifying mental commands, using 

the Emotive kit as a basis, for four classes of mental tasks (lifting, lowering, 

left/right movement) using motor imagination. Through another Emotive interface, 

the result of the mental command training was mapped to the drone's actions. 

21. We proposed to extend the functionality of the drone for monitoring hazard areas, 

by integrating a CC2650 SensorTag kit containing 10 MEMS sensors that can be 

used for the acquisition of environmental parameters.  

 

Chapter 5: 

22. We made and designed a pool game called Mental Pool Game, using the Unity3D 

game engine. For the acquisition of EEG signals we used the same neural headset 

used for the control of the quadcopter and in the design of the case study. This 

game has been developed to be accessible to both healthy and disabled staff. The 

BCI interface also offers an alternative to traditional peripheral input devices such 

as keyboard, mouse or joystick. 

23. We designed the billiards game in the Unity3D game engine, using mesh 

components, components that involve elements of physical interaction, rendering 

components, all of which are used within the game to describe the interactions 

between virtual objects. 

24. For the integration of the BCI interface, we implemented a script in the C# 

programming language, through which the neutral mental state and the mental 

command "Push" were trained for nine seconds. A scenario has been implemented 

whereby the user imagines the movement of a kinesthetic complex performed by 

the shoulder and elbow joint. Through this imagined action the user can increase 

the speed of movement of the cue ball in order to hit any of the 15 balls on the pool 

table. 

25. We integrated the reading of the x and y coordinate values coming from the 3-axis 

gyroscope of the neural headset through a script made in the C# programming 

language, to control the rotation of the camera using the Emotiv development kit 

integrated into Unity. This allows the user to control the direction of movement of 

the cue ball around the table. 

26. We implemented the game mechanics of billiards, importing the 3D elements, 

table, and billiard balls under an open-source license, then added the collision 

components, along with the physical materials to be able to simulate the realistic 

interactions between the game objects. 
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27. In order to be able to configure the BCI system, we created a user interface using 

UI elements from Unity, to be able to manage the user profile, the buttons for 

training mental commands and the display of status messages, all of which are 

included in a main menu panel. 

28. We made a BCI command and control application of a Lego NXT Mindstorms 2.0 

educational platform, which was programmed using interfaces created in the C# 

programming language. 

29. To make the BCI interface we used an OpenBCI neural headset, based on a Cython 

development board and a Daisy extension module, whose structure was redesigned 

and 3D printed to fit the anatomical shape of any user's head. 

30. We performed a neural control based on 16 EEG channels, using the OpenBCI 

interface, to provide feedback related to the EMG signals detected following the 

recognition of four untrained facial expressions generated by the facial 

musculature and which control the forward, backward, left and right turn of the 

robotic platform. 

31. To control the Lego platform, we developed an interface in C#, which facilitates 

Bluetooth communication between the computer and the Lego platform. The 

interface allows the user to configure the keys for controlling the servo motors, 

check the battery status, and display the firmware version of the platform. 

32. We developed a BCI system that uses the paradigm of finite evoked visual 

potentials (SSVEP) to control the motion vectors of a spider robot, designed and 

3D printed. We used the NextMind neural headset equipped with 9 dry electrodes 

that allows the measurement of the activity of the visual cortex. 

33. We developed a hardware and software architecture of the controlled system, using 

an Arduino Nano V3 development board, connected through an expansion module 

designed specifically for this development board, which allows PWM control. We 

also integrated a Raspberry Pi Zero W board used as a minicomputer for wireless 

communication and implemented a UDP communication protocol for transmitting 

commands. 

34. We developed a background framework in the computer-aided software 

SolidWorks, with the aim of improving the appearance of the BCI interface. It has 

been integrated into the Unity3D game engine, being augmented with six 

(primitive) sphere-type objects, in order to represent inputs that generate visual 

stimuli used as triggers for the SSVEP-BCI system. 

35. We implemented the BCI interface for robot control in the Unity3D game engine 

based on a script implemented in the C# programming language, which reads the 

activations of the NeuroTag trigger integrated in each primitive, which has the role 

of acting similarly to a button that sends through the serial interface the value of 

the string assigned to the predefined command. 

36. To improve the appearance of the BCI interface, a background frame was created 

in the SolidWorks computer-aided software (CAD). The resulting GUI interface 
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will be augmented with six sphere (primitive) objects, in order to represent inputs 

that generate visual stimuli used as triggers for the SSVEP-BCI system.  

37. In order to accommodate the user with the interface and measure the user's 

attention to the response evoked through visual stimuli, we implemented a 

calibration manager in Unity3D integrated through the development kit offered by 

NextMind.  

38. We implemented a process of testing the results obtained by each of the three 

participants throughout the training and the free session of voluntary action, which 

were stored in an individual CSV file. For each of them, the familiarization time 

and the level of attention obtained were measured, being represented in graphical 

form based on a code written in the Python programming language. 

 

DEVELOPMENT DIRECTIONS 

As for the future development directions, I can define some main proposals: 

• I am considering extending the case study by using the OpenBCI neural headset, 

equipped with 16 EEG channels, to analyze the distribution of brain waves in 

locations that are not covered by the Emotiv Insight neural headset. This involves 

the addition of EEG electrodes in the locations of the primary motor cortex (M1), 

namely in the C3 and C4 locations that are legislated by means of the international 

standard 10-20 that provides for the placement of electroencephalogram 

electrodes. In this way, the results obtained by the proposed scenario of training 

the mental command of lifting based on the imagination of the kinesthetic 

movement of the arm can be validated, namely on the basis of the actual 

implementation of the kinesthetic motor imagery paradigm. 

• As a second proposal, I want to extend the BCI applications already proposed to a 

field of rehabilitation, involving the control of a neuroprosthesis designed and 3D 

printed, using a non-invasive EEG signal acquisition method. Such a solution can 

offer an alternative to the expensive prosthesis solutions on the market, which are 

often uncomfortable and have little functionality due to limited technical 

characteristics. 

• Finally, I am also considering extending the drone control application for outdoor 

navigation, using another hardware solution, which will benefit from a wider 

network of sensors, even based on the integration of the kit for monitoring 

environmental parameters already proposed for the management of hazard 

situations, using a BCI solution. Also, the availability of a drone that also contains 

an autonomous navigation module based on GPS technology is another goal, along 

with finding a remote communication solution between the neural headset and the 

drone, using a solution based on mobile networks by integrating a GSM module. 

Thus, the distance covered by the drone can be extended and the possibility of its 

return to the take-off point, in case the connection between the devices is lost. 
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