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Introduction 

In last years, more and more techniques and technologies have emerged that assist certain 

operations, which has led to the emergence of specially designed devices for the rehabilitation of 

people with different degrees of disability. Especially in the case of amputated arms or if the 

patient has mobility and limb control, several types of devices have been designed. At present, 

the prostheses used as extensions of any member bring both aesthetic and flexibility 

improvements. 

Several research projects are centered on the idea of developing devices that support 

human movements, even if the results are promising, none of the proposed solutions offer an 

effective control or drive system for this type of device. This research is centered on creating an 

exoskeleton-type robotic device for people who have certain problems or limitations in upper 

limb basic movements. Although some movements may seem trivial, they are essential in the 

rehabilitation process, but also in everyday life because the patient will no longer be dependent 

on another person for certain operations. 

The proposed device will be equipped with a EMG signal acquisition and analysis system 

that will be able to perceive the carrier's intentions of movement and the drive system will help 

and support the independent robotic exoskeleton movement. 

We take this decision to focus our efforts on developing a device to facilitate arm 

movement because, after researching these types of devices, we noticed that most of them are 

focused on supporting or limiting arm movement in the recovery process, few of them also having 

a drive to reduce the effort of the arm to achieve the movement, despite the fact that most patients 

also need it. 

From the beginning, it was necessary to determine the EMG signal from several perfectly 

healthy arms so that we can see the signal value according to the intention of the movement, then 

the same movement of a problem arm to see the differences that appear to be able to determine a 

pattern. 

Then we will describe the structure of a biomechanical model of the human arm in order 

to recognize the intentions of the subject by making an analysis of the electromyographic activity. 

After determining the intention to move, it is necessary to execute the control of the actuation 

system for the movement of the exoskeleton in the same way as the arm. A complete model of 

the relationship between the EMG signal and associated movements will be useful in designing 

the robotic exoskeleton to support and assist the movement of the diseased arm. Additionally, 

IMU type sensors will be included to correct the exoskeleton movement based on information 

regarding the human arm segment orientation information. 

From the general objective results specific objectives: 

OB.1. Designing an exoskeleton to support the movements of a low-mobility arm  

OB.2. Conducting motion prediction by using specific sensors. 

OB.3. Operation of the exoskeleton on the basis of the intention of motion 

identified to support the arm. 



The research is structured into three chapters of content, an introductory chapter, a chapter 

on research methodology, a chapter of conclusions, contributions and further developments and 

bibliographic references relevant to the subject. 

Chapter I - Current state of research 
This chapter presents a study of the literature in order to achieve the research objectives. 

A research has been carried out of the current state of the exoskeleton-type robotic devices used 

to support the upper limb movement or used in rehabilitation treatments by persons who have 

lost part of their mobility due to an accident because the muscles are no longer able to perform 

certain normal movements. At the same time, a research was carried out on the types of sensors 

and the signals acquired and processed to determine the intention of movement, and in order to 

determine the position to which the arm should reach in accordance with the intention of the 

movement, the order of the exoskeleton and the model of the movement . 

1.1. Exoskeleton 

First application of the active robot exoskeleton was to provide an external power to a 

soldier so that he could carry extra weight. Since then, this technology has focused on developing 

human power assisted and improved systems. Later, this technology has been used in other 

applications, such as limb rehabilitation and tele-surgery. Exoskeleton research is still a growing 

area and requires multidisciplinary approaches to solving complex technical problems. 

1.2. Electromyography (EMG) 

The development of electromyography (EMG) began with the documentation of 

Francesco Redi in 1666. The document informs that some groups of squirrel muscles generate 

electricity. In 1773, Walsh was able to show that the muscular tissue of the eagle could generate 

a spark of electricity. In 1792, a publication entitled "Viribus Electricitatis in Motu Muscles 

Commentarius", written by A. Galvani, appeared in which the author showed that electricity 

could trigger muscle contractions. 

Electromyography (EMG) is the study of muscle function by analyzing the electrical 

potential produced by the muscles. EMG nowadays has become an important tool in biomedical 

and clinical applications. Thus, EMG detection, processing and analysis signal has become a 

major research element in the biomedical field, involving a wide range of physician, engineer, 

physicist, and computer scientist experts. 

Electromyographic signals (EMG) can be used for clinical and biomedical applications. 

Currently, there are three common EMG signals. First of all, determining muscle activation time, 

that is, when the muscle starts and ends. Secondly, estimating the force produced by the muscle 

and third, obtaining an index of the moment when a muscle is tired by analyzing the signal 

frequency spectrum. 

To aquire the sEMG signal, the electrodes are placed on the skin in the area surrounding 

the muscle. Alternatively, wired or needle electrodes are used and they can be placed directly into 

the muscle. When the EMG signal is taken from electrodes mounted directly on the skin, it is a 

composite of all the potentials of muscle fibers that are very close to the skin 



1.3. Controllers 

The exoskeleton is an electromechanical structure worn by the user, which matches the 

shape and functions of the human body. It is capable of increasing the capacity of human limbs 

and / or treating muscles, joints or skeletal parts which are weak, ineffective or injured due to a 

disease or neurological disorder. Moreover, it combines machine power and human intelligence 

to enhance machine intelligence and user power. The exoskeleton operates mechanically in 

parallel with the human body and can be actuated passively and / or actively. 

One of the types of exoskeleton control systems is the model-based control system. 

Generally, according to the model used, the control strategy for the exoskeleton can be divided 

into two types: control based on the dynamic model and control based on the muscle model. The 

dynamic model of the exoskeleton is derived by shaping the human body as rigid bundles joined 

by joints (bones). This model consists of the combination of inertial, gravitational, Coriolis and 

centrifugal effects. The dynamic model can be obtained in three ways: the mathematical model, 

the system identification, and the artificial intelligence method. The mathematical model is 

obtained by the theoretical modeling of the exoskeleton based on the physical characteristics of 

the system. The second way to get the dynamic model is to identify the system. This method is 

very useful because it is difficult to achieve a good dynamic model by using the theoretical 

mathematical model. The last method for obtaining the dynamic model is artificial intelligence. 

His popularity of solving many nonlinear problems has attracted some researchers to become 

involved in the dynamic identification of the model. 

1.4. Applications 

Nowadays, the usual wearable robots are mainly for military applications, health care 

rehabilitation and cargo lifting in industry and production. The Sensor and Control Concept for a 

Wearable Robot for Manual Load Handling Assistance presents a sensor and control concept for 

a robot that can be worn for manual handling of loads in the industry. Special requirements are 

addressed, such as reduced costs, direct human contact and cargo, and easy configuration. A stand 

mounted on the test wall of a hinged joint was built to evaluate proposed sensors and control 

algorithms. By using a torque sensor in the joint as a reference it is shown that low-cost force 

sensors can be used in the forearm to measure the interaction of the robot with the man. A torque 

and speed-based approach and an impedance control-based approach, which allows the user to 

move freely while not handling tasks, and which also allows the integration of a human control 

signal to adjust the force support, is compared. 

Chapter II - Research methodology 
The PhD thesis is part of applied scientific research. 

Present research methodology responds to the overall objective and derived objectives. 

Thus, the research in this thesis aims to provide solutions to the identified problem, 

namely the need for devices to complement the array of exoskeletons to support human arm 

movement while the number of people affected by neurological problems limiting upper limb 

movements is increasing. 

From the study of the specialized literature, including the current stage of evolution of the 

theoretical and applicative approaches in the field of the subject, the following specific objectives 

were formulated for the realization of the research: 



Objective 1: Design an exoskeleton to support the movements of a low-mobility arm. 

First stage in designing the exoskeleton is the mathematical modeling of the human arm, 

namely the kinematical shoulder-elbow-wrist chain. For this, the kinematic models develop 

directly and inversely, as well as the dynamic model. All of these models are implemented in the 

MatLab-Simulink simulation modeling platform using the SimMechanics toolbox. 

Objective 2: Achieve motion prediction by using specific sensors. 

In order to use the directly determined DH model, it is necessary to know the angles of 

movement of each arm coupling. Angle sensors (EMG) are used to estimate the angle of 

movement of each arm of the human arm. This system is designed using system identification 

tools based on input data collected from EMG sensors and output data provided during the 

identification of angular position sensors (IMU). 

The acquisition and processing of EMG signals is done in a non-invasive way, in 

accordance with already established models. 

Objective 3: Operation of the exoskeleton on the basis of the intention of motion 

identified to support the arm. 

At this stage the model and simulation of the human arm assembly - exoskeleton for the 

testing of their synchronous motion - are carried out. The direct kinematical model of the human 

arm and the invasive kinematic model of the exoskeleton are used at this stage. Movement of the 

human arm is done by actuating each coupling, based on the angles estimated using the EMG 

sensors, and determining the kinematical position of the wrist. The wrist, according to the 

exoskeleton prototype project, is used as a reference for movement of the final element of the 

exoskeleton. That is, the position of the wrist, resulting from the straight arm model, represents 

the position to which the final element of the exoskeleton must arrive, which is the input size for 

the inverse kinematic model of the exoskeleton. This model determines the translation and 

rotation movements of the exoskeleton's couplers, which bring the final element of it to the same 

position as the wrist. 

Chapter III - Modeling and simulation of the human arm 
This chapter presents the simplified approach of the human arm to develop mathematical 

models both cinematic and dynamic. For kinematic models, Denavit-Hartenberg formalism is 

used to determine the direct kinematic model and vice versa. For the kinematic model, all the 

rotation couplers of the three arm couplings are considered: shoulder (3 turns), elbow (2 turns) 

and wrist (2 turns). For the direct kinematical model and vice versa, only the coupling of the 

shoulder and the elbow is considered because in the case of this thesis we are interested in the 

position of the wrist. For dynamic models, the Jacobian method is used to determine the speeds 

both as a direct and vice versa. Before performing motion simulation, the types of motion 

trajectories that were useful in conducting any robot or system assimilated to a robot were 

analyzed. 

Chapter IV - Designing an exoskeleton for the right arm 
This chapter presents the mechanical design of a right arm exoskeleton to track the 

movement of the human arm and be able to support the arm if the person using the exoskeleton 



is tired. In order to achieve the design of the mechanical part of the exoskeleton, a first research 

was made on existing devices and patents on this subject. After studying in detail several types 

of such devices, we propose an exoskeleton model used to support the movement of the upper 

right arm. 

Mathematical models have developed both cinematic and dynamic. As in the previous 

chapter, for kinematic models, Denavit-Hartenberg formalism is used to determine the direct 

kinematic model and vice versa. For dynamic models, the Jacobian method is used to determine 

the speeds both as a direct and vice versa. For motion simulation, the motion trajectory types 

presented in the previous chapter were used. 

As simulation modeling environment, MatLab-Simulink, along with the SimMechanics 

toolbox, allows the implementation of cinematic and dynamic mathematical models to simulate 

the movement of the exoskeleton. 

In the last part of this chapter, in MatLab was implements the direct cinematic and 

dynamic arm model coupled with the inversely cinematic and dynamic model of the exoskeleton. 

Chapter V - Control of the integrated arm-exoskeleton system 

5.1. Basic concepts for system identification 

Very often, engineering practice requires the dynamic mathematical model of the process, 

the execution element, the measuring element, etc. In the field of automated process management, 

mathematical models are required for system simulation and design, and later defect detection 

and process optimization. Mathematical models can be conceptual (phenomenological), physical 

(empirical) and mathematical (analytical). Determining experimental mathematical models is the 

object of system identification study. The experimental analysis of the system that is to be 

mathematically modeled involves the off-line or on-line purchase of the input and output 

variables of the system, and then their processing in order to determine the mathematical model. 

5.2. System identification using neural networks 

Neural networks characterize assemblies of simple, interconnected and parallel 

processing elements that aim to interact with the environment in a biological-like and learning-

friendly way.  

There is no generally accepted definition of these types of systems, but most researchers 

agree to define artificial networks as networks of simple elements strongly interconnected by 

means of links called interconnections through which numerical information is propagated. 

Artificial neural networks are part of the so-called cognitive systems, which are a 

collection of computer technologies inspired by the mechanisms that are used by the human brain 

to process received signals, thinking, decision making, and the principles of natural evolution. 

Fuzzy systems, genetic algorithms and expert systems are included in the same category. 

The origin of neural networks is in the study of brain-formed networks of neurons and 

their synapses. They have the ability to learn from examples in a connexons way and improve 

their performance using previous experience. 



5.3. Identify the intention and position of the arm based on the EMG and IMU 

signals  

Two types of sensors were used to achieve the experimental part. The Electromyography 

Sensor (EMG) was used to detect the intention to move for the abduction / arm adduction. An 

IMU sensor has been positioned along the EMG sensor to determine the angle of the arm. 

The Electromyography Sensor (EMG) measures muscle activity by monitoring the 

electrical potential generated by muscle tissue. It picks up, amplifies and processes the complex 

electrical activity of a muscle group and turns it into a simple analog signal that can be read by 

any digital analogue converter (DAC) microcontroller. The relationship between muscle activity 

and output voltage can be adjusted with the potentiometer on the sensor board. 

IMU 

The BNO055 arm angle measuring sensor is the first in a new family of absolute 

directional sensors that includes all sensors in a single package. 

BNO055 is a package system that integrates a 14-bit triaxial accelerometer, a 16-bit 

triaxial gyroscope with a range of ± 2000 degrees per second, a triaxial geomagnetic sensor, and 

a 32-bit microcontroller. 

5.4. Modeling and simulation arm exoskeleton assembly 

We have the direct kinematic model Denavit-Hartenberg, which calculates the position 

and orientation of the wrist based on the estimated movements from the signals received from 

the EMG and IMU sensors. The wrist position determined from the human arm's Denavit-

Hartenberg model represents the input size in the inverse Denavit-Hartenberg model of the 

exoskeleton, which calculates the displacement 𝑑1 for the translation coupler and the angles 𝜃1 

and 𝜃2 for the rotation couplers. 

Capitolul VI - Contributions and further enhancements 

Contributions 

3. We realized the direct and inverse kinematic model of the exoskeleton to determine the 

position to be reached and the speed with which to do so. 

4. We designed, following the study of the exoskeleton, a model using only electric drives. 

5. Making a new exoskeleton model that follows the user's arm to support the movement. 

6. The use of a translational movement to support the shoulder movement of the arm, 

which means a lower wear of the motion transmission system than the use of a rotational 

movement. 

7. Acquisition and processing of EMG signals by non-invasive method in accordance with 

already established models and improvement of prediction by use of sensors for the 

orientation of the arm. 



8. Implementation of the exoskeleton actuation system based on the intended motion to 

support the arm. 

Further enhancements 

1. Use a lot of lighter materials, but at least as resistant to the construction of the 

exoskeleton. 

2. Try to create an exoskeleton that can be worn by the user. 

3. A universal device easy to adapt for the right or left arm 
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