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Abstract: This paper addresses the determination of the center of mass of a flat 
homogeneous plate with an irregular geometry, specifically an L-shaped configuration, using a 
graphic method supported by analytical validation. The proposed approach relies on decomposing 
the plate into simpler rectangular components whose centers of gravity can be easily identified. By 
applying the graphic construction in two distinct decomposition schemes and intersecting the 
resulting lines that connect partial centers of mass, a unique position of the global center of mass 
is obtained. To confirm the accuracy and consistency of the graphic method, an analytical 
demonstration based on classical mechanics equations for systems of parallel forces is provided. 
The study proves that, regardless of the chosen decomposition, the resulting center of mass remains 
identical. The method offers a practical and intuitive alternative for determining the center of 
gravity of homogeneous flat bodies with complex shapes and can be effectively applied in 
engineering education and preliminary design analyses. 
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1. INTRODUCTION 
 

The existence of the gravity field of the Earth leads to exerting an interaction from 
a distance between a body and the Earth, namely, the force of gravitational attraction. 
Gravitational forces represent the classic case of parallel force. These forces can be 
reduced to a resultant applied in the center of parallel forces, which in this case becomes 
the center of gravity. The phrase center of gravity is often interchangeable with center of 
masses, but they are different physical concepts. The two centers overlap in a uniform 
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gravitational field. 
The center of mass represents a concept of a more general character than the 

center of gravity, being defined independently compared to the latter. In the absence of 
the gravitational field, the center of gravity loses its sense, while the center of mass 
continues to exist. Similarly, in an uneven gravitational field, the two points (centers) 
occupy different positions. It is noted that in the context of current technical problems, 
one can consider that the positions of the two coincide. 

The position of the center of gravity of a body is determined more easily when 
the latter is homogeneous and has symmetry elements[1].  

Determination of the center of gravity of a compound body can be done with the 
help of partial centers of gravity, the body having a shape allowing it being divided in 
several component parts, for each of the parts the mass (weight) and the position of the 
center of gravity being known. 

 The center of gravity of a homogeneous body and of regular geometric shape 
depends on the geometric elements of the body, not on the nature of the material of which 
it is made, and can be decomposed in component parts, also of regular geometric shape. 
If these bodies have plane, an axis or a symmetry center, then the center of gravity is found 
in the respective plane, on the axis or in the center of symmetry, respectively[2,3]. 

The center of gravity of the simple homogeneous bodies, of regular geometric 
shapes (for example, square, rectangle, triangle) can be determined graphically 
(geometrically) as well. 

We shall further present aspects on the graphic method applied in the determination 
of the center of gravity of a homogeneous flat plane of given configuration and the 
justification of this method. 
 

2. GRAPHIC DETERMINATION OF THE CENTER OF MASS OF THE 
PLATE 
 

We consider the homogeneous plate having 
the given configuration (in the shape of the letter L), in 
figure 1, and we aim to determine the center of weight 
of the plate, with the help of a ruler and a sharp pencil. 
As it is seen from the figure, the plate has straight 
angles, and it is also homogeneous and has constant 
thickness. 

We shall further proceed to explain the 
procedure used, showing how the center of gravity of 
the plate has been localized. 

We shall further present how to proceed, and 
explaining the procedure used we show how the center 
of gravity of the plate has been localized. 

The solving follows. As it is noticed, the plate 
in the shape of the letter L is formed by joining two 

 
Fig. 1. Geometric configuration of   
the homogeneous L-shaped plate 
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rectangular plates, of unequal lengths.    
Their centers of gravity are found at the intersection of diagonals (in the very 

middle of the respective rectangles). The center of the 
plate in the form of the letter L is found on the line that 
joins the centers of the two rectangular plates. 

The arms of the letter L are not equal however. 
therefore, the choice of the two rectangular joined plates 
can be done in two distinctive ways (see the dotted line in 
the drawing in figure 2). 

The first way is formed by the rectangular plates 
having their centers of gravity C1 and C2, respectively. 

The second way is formed of rectangular plates 
having their centers of gravity C3 and C4, respectively. 

Point C (of intersection of the two straight lines 
obtained by joining the centers of gravity of the selected 
plates in the two ways) is the center of gravity of the plate 
in the shape of the letter L. 
 

3. THE ANALYTICAL SOLUTION FOR THE APPLIED GRAPHIC 
METHOD 
In order to justify the graphic way in which the position of the center of gravity 

of the homogeneous flat plate has been obtained, we shall demonstrate its reliability be 
analytical method[4]. 

We shall consider the first way of selecting the component plates as in Fig. 3 a 
with centers of gravity, rectangular plate 1, of mass m1 and the center of gravity in point 
C1, and the rectangular plate 2, respectively, of mass m2 and center of gravity in point C2.  

Let us have in plane xOy (Fig. 
3.b.) point C1 of mass m1 and its vector 
of position 1 1 1r x i y j   , and point 
C2, respectively, of mass m2 and its 
vector of position 2 2 2r x i y j  , 
center of mass (weight) C, of mass 
m1+m2 of the wo points, having as 
vector of position C Cr x i y j   
(according to the equations  to 
determine the center of mass in 
mechanics) has the coordinates given by 
the equations: 

 

1 1 2 2 1 1 2 2
C C

1 2 1 2

m x m x m y m y
x , y

m m m m
 

 
 

,                              (1) 

 

 
Fig. 2. Graphic determination  

of the center of mass 
 

 
A                                              B 

Fig.3. A) First plate decomposition 
B) Cartesian model of the first decomposition 
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We verify if the center of mass C is on the line determined by points C1 and C2. 
For this, we use the condition that has to be met by the extremities of three vectors that 
these extremities should be colinear. 

We consider the vectors of position of the material points C1, C2 and 1OC , 2OC , 

respectively, and the vector of position of the resultant center of mass C, and OC , 
respectively. 

The condition for the extremity of the vector OC r  to be found on line C1C2 is 
that in the equation of dependence: 
 

21 1 2 1 1 2 2OC OC OC sau r r r       ,                            (2) 
 

to have 1 2 1   . 
We write: 

 

   1 1 2 2 C C 1 1 1 2 2 2r r r x i y j x i y j x i y j           ,             (3) 
 

whence considering equation (1) and the expressions of vectors 1r  and 2r  , we have: 
 

   1 1 2 2 1 1 2 2
1 1 2 2 1 1 2 2

1 2 1 2

m x m x m y m y
i x x i , j y y j

m m m m
   

 
   

 
,         (4) 

 
Thus from (4) results: 

 

   1 1 2 2
1 1 2 2 1 1 2 2 1 1 1 2 2 2 1 2

1 2

m x m x
x x m x m x x m m x m m

m m
   


       


,  (5) 

 
Identifying term by term in equation (5) we get: 

 

   1 2
1 1 1 2 1 2 2 1 2 2

1 2 1 2

m m
m m m , m m m

m m m m
          

 
,     (6) 

 
whence: 
 

1 2 1 2
1 2

1 2 1 2 1 2

m m m m
1

m m m m m m
 


    

  
,                              (7) 

 
In the end it results that points C1, C2 and C are colinear. 
We verify whether the center of gravity C is found between points C1 and C2. 

Thus C is inside the segment [C1C2], C1(x1,y1), C2(x2,y2) if C1C2=C1C+CC2.  
That is, vectorially one writes that if: 1 2 1 2C C C C CC  , then 1 2C C C . From 

Fig. 4 it results: 
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 1 1 1 1
1 2 2 1 2 1

2 2

2 1 1 2
2 1 1 2 1 2 2 1

r r C C r r C C
C C r r r CC r C C

r r CC
r CC r C C C C CCr r C C C C r r

                             

,  (8) 

 

We shall further verify by another method whether vectors 1C C  and 1 2C C  are 
colinear ( 1 2C C C∈ ) and whether the center of gravity C is found between points C1 and 
C2. Thus from Fig. 3B it results: 
 

1 1 1 1

1 1 2 2 1 2 2 1

OC C C OC C C OC OC

OC C C OC C C OC OC

    

    
,                         (9) 

 
where: 
 

1 1 1 1 2 2 2 2 C COC r x i y j , OC r x i y j , OC r x i y j         ,   (10) 
 
hence: 
 

   1 2 2 1 2 1

1 1 2 2 1 1 2 2
1 1 1

1 2 1 2

1

C C x x i y y j

m x m x m y m y
C C x i y j

m m m m

m x

   

                    

 2 2 11 m x m x  2 11 1 1

1 2

m x m y
i

m m
        

   

2 2 1 1 2 1

1 2

2 2
2 1 2 1 1 2

1 2 1 2

m y m y m y
j

m m

m m
x x i y y j C C

m m m m

         

       

,   (11) 

 
Thus: 

 

2
1 1 1 2 1

1 2

m
C C C C , 1

m m
 

       
 ,                                    (12) 

 

In conclusion, vectors 1 2C C  and 1C C  are colinear ( 1 1 1 2C C C Cµ=  and vectors 
having the same origin) and the center of gravity C is found between points C1 and C2, μ1 
< 1. 

We shall further consider the second way of choosing the component plates, as in 
Fig. 5, with the centers of weight, rectangular plate 3 of mass m3=m1-m and the center of 
weight in point 3C  and the rectangular plate 4, respectively,  of mass m4=m2+m and the 
center of weight in point 4C . 
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Let it be now in plane xOy point C3 of mass m3=m1-m  and vector of position 
3 3 3r x i y j   and point C4 , respectively  masa m4=m2+m and vector of position 

4 4 4r x i y j   center of mass C ′  of the two points having as vector of position 

C Cr x i y j     has the coordinates (according to the equations for determination of the 
center of mass in mechanics), given by the equations: 
               

     

     

1 3 2 4 3 1 4 2 4 33 3 4 4
C

3 4 1 2 1 2

1 3 2 4 3 1 4 2 4 33 3 4 4
C

3 4 1 2 1 2

m m x m m x x m x m m x xm x m x
x

m m m m m m m m
m m y m m y y m y m m y ym y m y

y
m m m m m m m m





     
  

    

     
 

    

   (13) 

 
The center of gravity C ′  should coincide with the center of mass  C ( C C′ ≡ ), 

since the same flat plane cannot have two centers of mass (weight), that is  ( OC OC′ ≡


). 
By partitioning the plate in the two ways, the mass of the plate stays the same. 

We shall further verify whether vectors 3 4C C and 3 3C C C C′ ≡  are colinear          
( 3 4C C C C′ ≡ ∈ ) and whether the center of gravity C ′  (that is, C ) is found between 
points 3C  and 4C . We thus have according to Figure 2: 
 

3 3 3 3

3 3 4 4 3 4 4 3

OC C C OC C C OC OC

OC C C OC C C OC OC

    

    
,                        (14) 

 
where: 
 

3 3 3 3

4 4 4 4

C C

OC r x i y j

OC r x i y j

OC OC r x i y j

   

  

   

,                                    (15) 

 
hence: 
 

   3 4 4 3 4 3

1 1 2 2 1 1 2 2
3 3 3

1 2 1 2

C C x x i y y j

m x m x m y m y
C C x i y j

m m m m

   

                   

,                  (16) 

 

But, since C C  , results: 
 

 3 1 4 2 4 31 1 2 2

1 2 1 2

x m x m m x xm x m x
m m m m

  


 
                             (17) 
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and 
 

 3 1 4 2 4 31 1 2 2

1 2 1 2

y m y m m y ym y m y
m m m m

  


 
                           (18) 

 
Considering (17) and (18) we can write: 
 

   

   

 

1 1 2 2 1 1 2 2
3 3 3

1 2 1 2

3 1 4 2 4 3 3 1 4 2 4 3
3 3

1 2 1 2

3 1 4 2 4 3 3 1 2

1 2

3 1 4 2 4 3

m x m x m y m y
C C x i y j

m m m m

x m x m m x x y m y m m y y
x i y j

m m m m

x m x m m x x x m m
i

m m

y m y m m y y y

                    

                         
          

   


 

     

3 1 2

1 2

2 4 3 2 4 3
1 2

2
3 4

1 2

m m
j

m m

1 m m x x i m m y y j
m m
m m

C C
m m

      

        






,   (19) 

 
Thus: 

 

2
3 2 3 4 2

1 2

m m
C C C C , 1

m m
 

        
 ,                              (20) 

 

In conclusion, vectors 3 4C C  și 3C C  are colinear ( 3 2 3 4C C C C  vectors having 
the same origin) and the center of gravity ( C C′ ≡ ) is found  between C3 and C4, μ2 < 1. 

Thus, in the end, the center of gravity of the plate is found  at the intersection of 
the lines that pass through points C1, C2 (line 1 2C C ) , and C3, C4 (line 3 4C C ), respectively. 

That is, 1 2 3 4C C C C C= ∩ . 
As it has been noted, the plate in the form of the letter L is formed by joining two 

rectangular plates, of unequal lengths. Thus, we consider lengths L1 and L2, respectively, 
and widths equal with l for both rectangles.  
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We shall determine with these dimensions the 
coordinates of the center of mass for the first mode of 
choosing the placement of the plates. (Fig. 4).  

Let’s have plate 1 with 1
1 ,

2 2
LlC  

 
 

 and 

1 1A L l= ⋅ and plate 2 with 2 1
2 ,

2 2
L L

C l + 
 

 and  

2 2A L l= ⋅  a=then according to the equations in 
mechanics, the coordinates of the center of mass of the 
plate in the shape of L are given by the relationships: 

 

 
 

 

2
21 2

1 2 2
C

1 2 1 2

1
21 2
1 2

C
1 2 1 2

Ll L l l L l
l L 2L L2 2x

L l L l 2 L L
L lL l L l L L l2 2y

L l L l 2 L L

       
 

 

 
 

  (21) 
 

We shall further determine with these 
dimensions the coordinates of the center of mass for the 
second way of selection of the placing of the plates 
(Fig.5). 

Let’s have plate 3 with the center of mass 
1

3 ,
2 2

L llC l
− + 

 
 and area ( )3 1A l L l= − and plate 4 

with the center of mass 2 1
4 ,

2 2
L l L

C
+ 

 
 

and area ( )4 2A l L l= + , similarly according to 

the equations in mechanics, the coordinates of the center of mass of the plate in the shape 
of L are given by equations: 

 

   

 
 

 

   

   

2
21 2

1 2 2
C

1 2 1 2

1
21 2
1 2

C
1 2 1 2

L ll L l l L l l
l L 2L L2 2x

l L l L l 2 L L
L l lL l l L l l L L l2 2y

l L l L l 2 L L

          
   


     
   

,                    (22) 

 
It is noted that in both cases, the coordinates of the center of mass are the same. 

 
Fig. 4. Geometric dimensions 
and center of mass coordinates 

for the first decomposition 
scheme 

 
Fig. 5. Geometric dimensions 
and center of mass coordinates 
for the second decomposition 

scheme 



Graphic and Analytical Determination of the Center of Mass of a … 109 

Another analytical method by which it can be demonstrated that the center of 
mass is the same in both cases, is to determine the point of intersection of the equations 
of lines determined by two points, these points being the very centers of mass of the plates 
in the two ways of placement. 

Thus, the equations of the lines determined by C1 and C2 (Fig. 4) and C3 and C4 
(Fig. 5) are given by equations: 
 

 
 

1

1 1

1 22 1 2 1

2
1 1 2 1

2

L ly xy y x x 2 2
Ll Ly y x x ll

2 2 2 2
2 l L x l L L 2lL

y
2 L l

  
   

       

   




,                           (23) 

 

 

1

3 3

1 24 3 4 3

1 1 2 1 2

2

L l ly xy y x x 2 2
L l L ll ly y x x

2 2 2 2
2L x l L L L L

y
2L


  

   
    

   


,                           (24) 

 
which intersected give the same values (coordinates) for the center of mass of the flat 
plate. 
 

4. CONCLUSIONS 
 
The present paper analyzed a graphic method for determining the center of mass 

of a homogeneous flat plate with a composite geometry, specifically an L-shaped 
configuration, highlighting both the practical applicability of the method and its 
theoretical foundation through analytical demonstration. The study confirms that graphic 
methods, although seemingly simple, can lead to rigorous and accurate results when 
applied on solid mechanical principles. 

One of the main outcomes of this work is the demonstration that the center of 
mass of a homogeneous flat plate is unique and independent of the manner in which the 
body is decomposed into component elements. In the analyzed case, the plate was divided 
into rectangular components in two distinct ways, each leading to different partial centers 
of mass. Nevertheless, the intersection of the lines connecting these partial centers 
consistently yields the same point, which represents the center of mass of the entire plate. 
This result confirms the consistency and correctness of the applied graphic method. 

The analytical justification of the graphic construction represents another 
essential contribution of the paper. By employing classical relations from theoretical 
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mechanics for determining the center of mass of a system of material points, it was 
demonstrated that the point obtained graphically lies on the segment connecting the 
centers of mass of the components and that its position is governed by the ratio of their 
masses (areas). The analytical verification confirms that, in this case, the graphic method 
is not approximate, but exactly reflects the mathematical solution of the problem. 

The presented method proves to be particularly useful in the analysis of 
homogeneous planar bodies with irregular or composite shapes, for which direct 
determination of the center of mass through integration may be difficult or time-
consuming. By decomposing the body into simple geometric figures and using elementary 
geometric constructions, the position of the center of mass can be identified rapidly and 
clearly. This approach is advantageous both in preliminary stages of engineering design 
and in verification or quick estimation tasks. 

Furthermore, the paper emphasizes the educational value of the graphic method. 
It facilitates a clearer understanding of the concept of center of mass and of the 
relationship between geometry and mass distribution, offering students an intuitive visual 
representation of a fundamental concept in mechanics. The correlation between the 
graphic construction and the analytical demonstration contributes to the development of 
logical reasoning and to a deeper understanding of classical mechanics principles. 

In conclusion, the graphic method for determining the center of mass analyzed in 
this paper is accurate, rigorous, and easy to apply for homogeneous flat plates with 
composite geometries. The analytical validation demonstrates that the obtained results are 
independent of the chosen decomposition scheme, confirming the general character of the 
method.  
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