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DECOMPOSITION OF THE ACCELERATION VECTOR 
IN COMPONENTS THAT ARE NOT OTHOGONALS 

RĂZVAN BOGDAN ITU 1, MIREL STOIAN 2, BOGDAN IOAN MARC3 
 
 

Abstract: Kinematic values (kinematic motion parameters) are those values that 
characterize motion. Many times, the use of another system of coordinate axes, for the study of 
the point motion, simplify the solving of practical problems; knowing the most usual motion 
variants is required, which exist in other coordinate systems as well. Thus, the paper presents 
aspects regarding decomposition of acceleration vector, in plane, in components that are not 
orthogonal. 
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1. INTRODUCTION 
 
Motion is an intrinsic property of matter, in the sense that there is no matter in 

absolute rest, as well as there is no motion without material support.  Modification of the 
state of motion of a physical state is generally studied as a consequence of the action of 
the surrounding bodies, or as a result of interactions of parts from the inside of the 
system. At the beginning, the modification of the state of movement can be studied only 
descriptively, without taking into consideration the causes that determine it. Such a 
geometric approach of motion is known as kinematic approach, and the respective 
chapter in mechanics is called Kinematics.Kinematics of material point studies the 
mechanical motion of material points, without taking into consideration the masses and 
forces acting on them. The most important physical values in kinematics are speed and 
acceleration, defined in relation with various coordinate systems. 

 
2. KINEMATIC PARAMETERS OF MOTION 
 
In order to study the way in which the position of a material point is modified in 
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time in relation to another, a system of reference needs to be defined (often called 
benchmark), considered to be fix in the context of the problem to be studied. The position 
in relation to the benchmark of the material point the motion of which is in study, is 
established by the so-called position vector. The latter, most often noted by  r r t , as 
function of time, has its origin in the origin of the benchmark, and the peak in the material 
point in study. Its projections on the axes of the system of reference used, also determine, 
univocally, the position of a point in space.  

The vectorial function  r r t  represents the law of motion of the material point 
in vectoral form. 

The trajectory is the locus of the successive positions taken by the point in 
motion. Between the trajectory and the curve on which the point travels there is not 
always an identity. 

The motions can also vary among them by the fact that material points can travel 
the same distances in different time intervals or different distances in the same time span. 
These considerations require a new concept, called speed, to be entered. Speed is a 
vectoral value that establish direction and sense in which motion is done. 

Acceleration is a value that shows the speed variation of a point along the 
motion, as direction, sense and module. 

The most often used in the study of point kinematics is the Cartesian system of 
coordinate axes. This system represents the foundation of building and defining of any 
other system of coordinates. 
 

3. ORTHOGONAL COORDINATE SYSTEM 
 

In geometry, a system of coordinates is a modality by which to any point i 
uniquely, an ordered set of real numbers is associated, called the coordinates of that 
point. In the Euclidean space, three coordinates are necessary (abscissa, ordinate and the 
applicate), in plane, two are necessary (abscissa and ordinate), and to localize the points 
on line, only one coordinate is required. In analytical geometry, the use of coordinate 
systems allows transforming the geometry problems in algebra problems. 

Orthogonal coordinates are called the ones in which the metric tensor has a 
diagonal shape. 

In mathematics, a tensor is a geometric object that associates in a multi-linear 
manner the geometric vectors, scalars and other tensors with a resulted tensor.  Vectors 
and scalars that are often used in elementary physics and in engineering applications are 
considered the simplest tensors. Vectors in dual space of the vectoral space, supplying 
geometric vectors, are also considered tensors. In this context, the word geometric has 
the aim of underlying the independence of any selection of a system of coordinates. An 
elementary example of transformation described as tensor is the scalar product, which 
transforms two vectors into a scalar. 

In geometry, and especially in differential geometry, metric tensor is a 2nd order 
tensor, which makes defining the scalar product of two vectors in each point of a space 
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possible, and which is used to measure lengths and angles. It generalizes Pythagoras’ 
theorem. In a given system of coordinates, the metric tensor can be  
represented as a symmetric matrix. 

In orthogonal systems of coordinates, the surfaces of coordinates are orthogonal 
the ones with the others. In particular, in Cartesian system of coordinates, the Ox, Oy 
and Oz axes of coordinates are orthogonal the ones with the others.  

The orthogonal coordinates represent a special case of curvilinear coordinates. 
Most frequently, the orthogonal coordinates are Cartesian coordinates, since in these 
coordinates, most of the equations have the simplest form. Other systems of orthogonal 
coordinates are less frequently used, especially for solving problems connected to limit 
value, such as the problem of thermal conductivity, diffusion, etc. The choice of this or 
that system of orthogonal coordinates is determined by the system symmetry. 

For example, when the problem of propagation of an electromagnetic wave from 
a point source is solved, it is beneficial to use a system of spherical coordinate system; 
when the problem of vibration of a membrane is solved, it is preferred a system of 
cylindric coordinates. 
 

4. PLANE MOTION IN POLAR COORDINATES 
 

Supposing a material point  M moves in plane Oxy (has a plane trajectory) (Fig. 
1). Its coordinates can be expressed by the equations: 
 

( ) ( ) ( ) ( )cos , sin , 0x r t t y r t t zθ θ= = =                               (1) 
 
where r(t) = OM (polar radius) and angle θ(t) (polar angle) 
made by the polar radius with Ox axis of the Cartesian 
system.  

The point movement is defined if coordinates r and 
θ  are known as time functions: 
 

( ) )(; ttrr θθ == ,                              (2) 
 

Equations (2) represent parametric equations of the 
trajectory. By eliminating time between the two equations  

 
Fig. 1. Polar coordinates 

the analytical expression on the trajectory is obtained (equation of trajectory f(r,θ)=0) in 
polar coordinates: )(θrr = . 

To establish the directions in which speed and acceleration in the system of polar 
coordinates are projected, we introduce vectors (versors of polar coordinates),  

cos i sin j       and sin i cos j      . Versors   and   are orthogonal 
(see Fig. 1). 

We further consider that polar angle θ stays constant and r varies. Thus, point  
M describes line OM that represents one of the projection directions. In this direction we 
have chosen the versor   in the sense of increasing the polar radius. 
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We then consider that polar radius stays constant. It results that point M 
describes a circle arc of radius OM = r. The second direction tangent to this arc is chosen 
in point M. In this direction we have chosen versor   with the positive sense given by 
the sense of increase of angle θ. 

During the motion, versors   and   change their direction, thus the axes of the 
polar coordinate system are mobile, but versors   and   stay perpendicular. 

For the expression of speed and acceleration in polar coordinates, we have the 
equations: 
 

   2v r r , a r r 2r r              

   ,                            (3) 
 

We have: 

   dv r t t r r
dt

      


 , 

but 
 

 cos i sin j cos i sin j
2 2
 

       
                            
 

 , 

 
For the second expression in equation (3), by derivation of the first in relation to 

time t, we get: 
 

 a r r r r r r 2r r r                      
 

     , 
 
and, since: 
 

     sin i cos j cos i sin j                        
 

 , 
 
the demonstration is concluded. 
 

5. COMPONENTS OF ACCELERATION IN PLANE MOTION IN NON-
ORTHOGONAL COORDINATES 

 
Considering that frequently the use of another system of coordinate axes, for the 

study of the point motion, simplifies the solving of certain problems, the knowledge of 
the most usual variants of motion can be studied in other systems of coordinates as well. 

 In the following, the acceleration vector components in plane motion in 
coordinates that are not orthogonal (pedal coordinates) are determined. We stay in the 
frames of the plane motion, and we shall introduce polar coordinates (r,θ). The base is 

 C ,   where  the versor of the vectoral radius r  is   and k   . See Fig. 2. 
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Fig. 2. Polar and pedal coordinates Fig. 3. Curve radius 

 
Thus the following equations take place: 

 

( ) ( )2, , 2r r v r r a r r r rρ ρ θε θ ρ θ θ ε= = + = − + +   

                  (4) 
 

We note with p the distance from origin O, of the system of coordinates to 
tangent  M ,r  in point M, curve Γ. The pair (r, p) assigns pedal coordinates of curve 
Γ. See Fig.2. 

The curve equation in pedal coordinates is given by the expression: 
 

1 dpk
r dr

=                             (5) 

 
We shall further justify the equation (5), then make the demonstration itself. See 

Fig. 3. 
Thus, knowing that we have values shown in Fig. 3 OT p , OU p dp  , 

0OM r , OM r dr   and also angle TOY d , the equation of the tangent 
circle radius in points  M0 and M belonging to lines TM0 and UM is: 
 

( ) ( )2 2 2 2 cos sin
sinC

r dr p dp r p p
R

d
θ θ

θ

+ − + − − +
=                           (6) 

 
In the case of our discussion, this is the curve radius in position M0 of trajectory 

Γ. To establish equation (6), we enter the notations 0x MX XM  ¸ 0y YM  and 
it is noticed that  0TOY UXY MCM    . 

Then: 
( )

( )
2 2

cos

cos

UM UX XM YX UXY x

x y d x OM OUθ

= + = + =

= + + = −



,                           (7) 
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( ) ( )2 2UM r dr p dp= + − + ,                                      (8) 
 

We further have : 
 

( )0 0 tanTM TY YM OT TOY y= + = + ,                           (9) 
 

0 tanTM p d yθ= + ,                                               (10) 
 

2 2 2 2
0 0TM OM OT r p= − = − ,                                 (11) 

 
From equations (10) - (11) and (7) - (8) we get: 

 

( ) ( )

2 2

2 2 2 2

2

tan

cos sin

2cos
2

y r p p d

r dr p dp r p p
x

d

θ

θ θ
θ

 = − −

 + − + − − + =



, 

 
The relationships 

( )tan tan
2

C

MX xR CM
dMCX θ

= = =


,                                 (11) 

 
together with  x formula, lead to equation (6). 

We shall further consider that ( ) ( )2 2 0dr dp dr dp= = ⋅ = , dp>0, respectively

2 0dpx
y y
= = , r2−p2>1 and cosdθ=1, sindθ=dθ. this allows us to make the following 

approximations: 
  

( )cos cos

cos

OT pOY p
TOY d

pUY OU OY p dp dp
d

θ

θ


 = = =



= − = + − =

 , 

and 

( )sin sin
UY dpd UXY

x yYX
θ = = =

+
 ,                                (12) 
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respectively – as per (9), (11) we have: 
 

( )2 2
0 tan

tan sin

r p TM OT TOY y

pdpp d y p d y y
x y

θ θ

− = = + =

= + = + = +
+



,                           (13) 

 
But, for any numbers α, β > 0 so that α > 1, β2 = 0, we have the approximation: 

2
βα β α
α

+ = + , 

 

Taking 2 2r pα = − , ( )2 rdr pdpβ = − , we deduce that: 
 

( ) ( )

( )

2 2 2 2

2 2 2 2

2 2

cos

2

r dr p dp r p d

rdr pdpr p rdr pdp r p
r p

θ+ − + − = − =

−
= − + − − − =

−

, 

 
Then, taking into account (13), we get: 

 

( ) ( ) ( )

( ) ( )

( )

2 2 2 2

2

cos

1

1
1

x y r dr p dp r p d

rdr pdp x yx y rdr pdp
pdp pdpy y

x y x y
x
yrdr pdp rdr pdp
p dp

x y
y

θ+ + − + − − =

− +
= + = − =

+ +
+ +

+
= − = −

+ ⋅
+

,                     (14) 

In the end, entering estimations (12), (14) in equation (6), we get: 
 

C
rdrR
dp

= , 

 
which justifies the “verification” of equation (5). To demonstrate equation (5), we need 

an intermediary equation regarding value p, namely 
2r

v

θ
. To this end, we start from: 

( ) ( ), 0,r OT TM OT TM TMτ τ τ τ λτ× = + × = × × = = , 

and get: 
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p OT OT rτ τ= = × = × , 
 

Considering equations (4), we have (with the observation that k   ): 
 

2r v rr k
v v

θτ ×
× = ± = ± ⋅



, 

we get: 
2r

p
v

θ
=



,                                                       (15) 

 
Further on, equalities take place— cf. [17, p. 72, Theorem 4.3], [16, p. 30] — 

 
3 2 2 32v k v a r rr rr rθ θ θ θ= × = + − +   

   ,                              (16) 
 
respectively, based on equation (15) we have: 
 

( ) ( )2 2 2
3 3

dv r r v vdp pv v dt
r dr r r r r

θ θ− ⋅
= =

⋅

 





 

,                             (17) 

 
entering relationships: 

 
2 2 2 2

2 2

v r r
v v rr rr r

θ

θ θθ

 = +


⋅ = + +





 

  

, 

 
in the third term of the equalities (17), we get: 
 

3
2 2 32dpv r rr rr r

r dr
θ θ θ θ= + − +   

   , 

 
which concludes the demonstration of equation (5). 

We come back to Fig. 3. In [6, p. 215, probl. 1972] the expression is discussed 
in polar coordinates of the value of angle µ made up of line OM with tangent to trajectory 
in current point -  namely -  M -. Thus, starting from: 
 

cos v v r
v v v

ρµ ρ τ ρ ⋅
= ⋅ = ⋅ = =

 , 

 
respectively, taking into account (15): 
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2sin 1 cos pr
v r
θµ µ= ± − = ± = ±


, 

we get: 
 

tan r dr
r dr
θ θµ = ± = ±




, 

 
In particular, function r = r(θ) satisfies linear differential equation: 

 

/cot , dr an r unde
d

µ
θ

′ = ± ⋅ = , 

 

Let S pv r v= = × . The following result takes place, known as F. Siacci 
theorem, cf. [11, p. 472]: acceleration a  of particle M is decomposed as per directions  
ρ  andτ  in accelerations 1a  and 2a  so that – see Fig. 2 -: 

 
2

1 1 2 2 2,
C

S r S dSa a a a
R p dsp

= = = = ,                                (18) 

 
Moreover, colinear directions ρ  and 1a  have opposite senses. 
We only approach case s > 0, θ < 0 in I, in accordance with Fig. 2. Starting from 

equations (4), we have: 
 

v r r
v v v

θτ ρ ε= = +




, 

 
whence we make explicit ε : 
 

v r
r r

ε τ ρ
θ θ

= −


 

,                                               (19) 

Entering expression (19) in the acceleration formula, we get: 
 

( ) ( )

( )

2

2
2

2

2 2

a r r r r

r r vr r r r
r r

θ ρ θ θ ε

θθ ρ θ θ τ
θ θ

= − + + =

 
= − − − + + 
 

  

 



 

  

 

 

, 

 
Taking into account equations (16) și (15), we get: 
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( )
3

2 2 3 22
2

1 3

2
2 C

C

v
r rr rr r v a pvRr ra r r

vr R pr r p
r

θ θ θ θθθ
θ θ θ

+ − + ×
= − − − = = = =

   

  


 







 

, 

 
respectively 
 

( ) ( )2

2 22

2
d d dSr pv Sr r S v dS S dSdt dt dsa

p p p p ds dspr r

v v

θθ θ

θ θ

−+
= = = = = = =

 

  



 

, 

 
In the end, applying the right hand rule, we notice that vectors   v a× =  

( )2 2 32r rr rr r kθ θ θ θ= + − +   

    and k−  have the same sense, thus vector: 
 

2 3 2

1
2 pozitivrr r r rra

negativr
θ θ θ θ ρ ρ

θ
− − −

= =
   

  



, 

 
has opposite sense to vector ρ . 
 

5. CONCLUSIONS 
 

Coordinates that are not orthogonal are more natural than Cartesian or polar 
coordinates in some settings, like the study of force problems of classical mechanics in 
the plane. 
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