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Abstract: The paper presents certain aspects regarding the determination of the 
support of a sliding vector system resultant function of the resultant moment of the vector 
system. 
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1. INTRODUCTION 
 
As it is known, a vector is a physical quantity that is defined by three 

properties: numeric value, direction and sense. The direction of a vector is a line in the 
space of existence of a vector, which is parallel with the vector. The line that is 
colinear with the vector, that is, the line that is obtained prolonging the vector beyond 
the origin and extremity of the vector, is called support line (vector axis). 

The versor of the vector axis is the vector the length of which is equal to the 
measurement unit of the respective vector. The versor specifies a positive sense on the 
vector axis. If the vector has the same sense as versor, its algebraic value is positive, if 
it has an opposite sense to the versor, its algebraic sense is negative. 

 By vector modulus we understand the modulus of the value of its algebraic 
value, a positive number equal to length of the vector related to the measurement unit. 

Replacing the concept of numeric value with modulus, and the concept of 
direction with support line, one can say that a vector is defined by three properties: 
modulus, support line and sense. 

In classical mechanics, according to the criterion of origin type, the following 

 
1 Lecturer, Ph.D., University of Petroşani, LauraMarica@upet.ro 
2 Lecturer, Eng. Ph.D., University of Petroşani, raz.van4u@yahoo.com 
3 Lecturer, Eng. Ph.D., University of Petroşani, apostu_susana@yahoo.com 



Marica, L., Itu, R.B., Apostu, S.E. 114 

vector categories (classes) are defined: free vectors, the support line of which can take 
any position in space, parallel with the given direction,  application point (origin) not 
being specified); sliding vectors, the support line of which is fixed in space, and the 
application point  (vector origin) is free on the support line; bound vectors, the support 
line of which is fixed in space, and the point of application (vector origin)is fixed to the 
support line. 

For any vector v  the analytical formula in Oxyz mark can be written in the 
form: 
 

x y zv v i v j v k= + + ,                                              (1) 
 
where vx, vy, vz are the coordinates of the vector. 

Coordinates vx, vy, vz are also called scalar components of vector v  and 
represent the vector projections on coordinate axes (Fig. 1): 
 

, ,x y zv v i v v j v v k= ⋅ = ⋅ = ⋅ ,                                (2) 
 

The vector modulus is given by the equation: 
 

2 2 2
x y zv v v v= + + ,                                           (3) 

 
2. POLAR MOMENT OF A VECTOR 

 
A v sliding vector is considered, with support line (∆) related to a tri-

orthogonal mark OXYZ. Polar moment of vector v  in relation with O pole, is called a 
vector, which is equal to the vectorial product between the position vector of a point on 
support (∆), in relation to pole O and the given vector. It is noted ( )OM v : 
 

( )OM v r v= × ,                       (4) 

where ( ),r OP P= ∈ ∆ . 
The polar moment does not depend on the choice 

of the point on the support, P∈ (∆) (Fig. 1). Considering 
another point P1 ∈ (∆), the following vectorial equation is 
written between points O, P  ̧ and P1 (variation law of 
coordinates at axes translation):  

Fig. 1. Polar moment 

1 1 1 1,OP OP PP r r PP= + = + ,                                     (5) 
 

We have: 
( ) ( ) ( )1 1 1 1O OM v r v OP v OP PP v OP v PP v r v M v′ = × = × = + × = × + × = × =    (6) 

 

Since vectors 1PP and v are colinear, the vectorial product being equal to zero. 
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We develop ( ) ( )0 0,OP P⊥ ∆ ∈ ∆  and we note 0b OP= , segment called v  vector 
arm. 

Polar moment modulus is: 
( ) ( )sin ,OM v r v r v b v= ⋅ ⋅ = ⋅ ,                                   (7) 

 
Since in the OP0P rectangular triangle, the equation: 

( )sin ,b r r v= ⋅ ,                                               (8) 
 
is verified 

Equation (8) highlights the fact that the locus of the points in space in relation to 
which the vector has the same polar moment, is a line parallel with the vector support 
that includes point O. 
 

3. CHARACTERIZATION OF A SLIDING VECTOR 
 

 A free vector can be defined with the help of three scalar magnitudes, for 
instance its projections vx, vy, vz on three axes of Cartesian coordinates. 

In addition, in case of a sliding vector v  it is necessary for the support – line to 
be known (Δ), along which the vector can travel. If the projections along the axes of 
vector v  are known, the directing parameters of the support – line are known. To 
completely define line (Δ), it is enough for the x0 and y0 coordinates for example, of 
point A0, in which line (Δ) crosses plane xOy (Fig. 2), to be known; therefore, five 
independent scalar magnitudes are therefore ultimately necessary, for the 
characterization of a sliding vector. 

To determine a sliding vector, 6 scalar magnitudes are commonly used: 
- projections vx, vy, vz on axes of vector v ; 
- projections ( )OxM v , ( )OyM v , ( )OzM v  on axes of moments ( )OM v  of 

vector  v  in relation to origin O of the axes system 
Since, as it has been shown, a sliding 

vector can be characterized only by three 
independent scalar magnitudes, it results, that 
the three scalar magnitudes vx, vy, vz, ( )OxM v , 

( )OyM v , ( )OzM v , are not independent, an 
identically satisfied relation being required to 
exist among them.  

Fig. 2. (Δ) crossed with xOy 
This equation is obtained immediately, if we consider that vectors v  and 

( )OM v  are perpendicular, thus the scalar product is null, namely: 
( ) ( ) ( ) 0x Ox y Oy z Ozv M v v M v v M v⋅ + ⋅ + ⋅ ≡ ,                              (9) 

 

Identity (9) can be checked directly as well, replacing ( )OxM v , ( )OyM v , 



Marica, L., Itu, R.B., Apostu, S.E. 116 

( )OzM v , with the equations (scalar components of polar moments): 

( ) ( ) ( ); ;Ox z y Oy x z Oz y xM v yv zv M v zv xv M v xv yv= − = − = − ,                (10) 
and 

( ) ( ) ( ) 0x z y y x z z y xv yv zv v zv xv v xv yv⋅ − + ⋅ − + ⋅ − ≡ , 
is obtained. 

It can be shown that the 6 scalar moments vx, vy, vz, ( )OxM v , ( )OyM v , 

( )OzM v , and vectors v  and ( )OM v  , respectively, completely characterize a sliding 
vector. 

 Indeed, these two vectors cannot be given in any way, they have to be 
perpendicular to one another. Let thus be two vectors v  and ( )OM v  perpendicular 
applied in O. Normal plane (P) is traced on vector ( )OM v  and, in this plane, lines (Δ) 
and (Δ') are considered parallel with v  and situated at distance 

( )OM v
d

v
= . One of these lines is the support 

we seek. In case of Fig. 3, line (Δ) is the one 
that solves the problem. Line (Δ') should be 
removed, since, if vector v  would be applied 
on this line, vector ( )OM v  would not comply 
with the straight drill rule. 

 
Fig. 3. Line (Δ) support of v  

 
4. LINE CHARACTERIZATION BY HOMOGENEOUS 
COORDINATES (PLÜCKER COORDINATES) 

 
Plücker coordinates or homogeneous coordinates (Plücker coordinates 

introduced by Julius Plücker in the 19th century) are a way of assigning six 
homogeneous coordinates to each (straight) lines in space. Thus, given a direction (Δ) 
characterized by versor u  (Fig. 4), Plücker coordinates are defined for direction (Δ), 
by a matrix, the elements of which are: 

- components of versor u  here noted (a,b,c), thus, according to the relation of 
versor definition, u  is written: 

, cos ; cos ; cosu ai bj ck a b cα β γ= + + = = = ,             (11) 
 

- components of vector r u li mj nk× = + + , and according to the definition of the 
vectorial product, it is written: 

( ) ( ) ( )
i j k

r u x y z yc zb i za xc j xb ya k
a b c

× = = − + − + − ,        (12) 
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where r  is the position vector of any point A on axis (Δ) in relation with the origin of 
the chosen system of axes, and its formula is: r xi yj zk= + + . 

After identification results: 
; ;l yc zb m za xc n xb ya= − = − = − ,                 (13) 

 
Thus, the Plücker coordinates of 

direction (Δ) are written in the form of column 
matrix: 
 

[ ]

a a
b b
c c

u
yc zb l
za xc m
xb ya n

   
   
   
   

= =   −   
   −
   

−      

,       (14) 

 

 
Fig. 4. Line (Δ)

Plücker coordinates of a direction have certain obvious properties: 
2 2 2

2 22 2 2 2 2
0

1

sin

a b c

l m n r u r u dα

+ + =

+ + = × = ⋅ ⋅ =
,               (15) 

 
Where 0d OD= is the distance from point O to line (Δ) (Fig. 4). 
 

5. DETERMINATION OF A SLIDING VECTOR SUPPORT 
FUNCTION OF THE POLAR MOMENT 

 
If a sliding vector v  is given by the analytical formula in Oxyz tri-orthogonal 

landmark,  
x y zv v i v j v k= + + ,                          (1′ ) 

 

And its moment is known in relation with the pole O, ( )OM v , that is, if the vector is 
given by Plücker coordinates, the problem of determining the support of v is raised, 
noted (Δ). 

For this, the relation of definition of polar moment is considered (4), where 
vectors v  and ( )OM v  are known, and which will represent a vectorial equation in the 
unknown vector r : 

( )OM v r v= × ,                            ( 4′ ) 
 

Vectorial equation ( 4′ ) is multiplied, vectorial to the left with vector v : 
( ) ( )Ov M v v r v× = × × ,                         (16) 
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Applying the formula of development of the double vectorial product,  
 

( ) ( )2
Ov M v v r v r v× = ⋅ − ⋅ ⋅ ,                      (17) 

is obtained, whence: 
( )

2 2
Ov M v v rr v

v v

 × ⋅ = +
 
 

, 

or: 
( )

2
Ov M v v rr u

vv
 × ⋅

= +   
 

,                      (18) 

where the versor of the vector v was noted 
vu
v

= ,                              (19) 

It is noticed that the first term in (18) represents the position vector in relation 
with the pole O of point P0 ∈ (∆), OP0 ⊥ (∆), where (∆) is the support line of vector v : 

( ) ( )
0 0 02 , OO M vv M v

r r OP b
vv

×
= = = = ,            (20) 

where b is the arm of the vector, defined in (8), and the second term in (18) represents 
the projection of the position vector r  on the vector support v : 

v
v rpr r r u

v
⋅

= = ⋅ ,                        (21) 

With these, equation (18) is written in the form of a vectorial equation with an 
infinity of solutions r : 

0 0,vr r u pr r r u= + ⋅ ⊥ ,                           (22) 
its graphic representation being given in Fig. 4. 

In Fig. 4, segment P0P represents the projection of vector r  on the support of 
vector v : 

( )0 vP P pr r u= ⋅ ,                            (23) 
Noting vpr rλ′ = , real parameter, equation (23) is written in the form: 

( ) 0: ,r r uλ λ′ ′∆ = + ⋅ ∈ ,                       (24) 
and represents the vectorial equation of the v .vector support. 

Introducing in 924) vector 0r  and versor u  (relations (20), respectively (19)), 
the following equation is obtained for v  vector support: 

( ) ( )
2: ,Ov M v

r v
v

λ λ
×

∆ = + ∈ ,                   (25) 

where λ is a real parameter ( )/ vλ λ′= . 

Substituting in equation (25) the scalar components of vectors v  and ( )OM v , 
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the following coordinates of an arbitrary point P result of the vector support v : 
( ) ( )

( ) ( )

( ) ( )

2 2 2

2 2 2

2 2 2

,

y Oz z Oy
x

x y z

z Ox x Oz
y

x y z

x Oy y Ox
z

x y z

v M v v M v
x v

v v v

v M v v M v
y v

v v v

v M v v M v
z v

v v v

λ

λ λ

λ

⋅ − ⋅
= + ⋅

+ +

⋅ − ⋅
= + ⋅ ∈

+ +

⋅ − ⋅
= + ⋅

+ +

 ,            (26) 

 

where λ is a real parameter, and ( )OxM v , ( )OyM v , ( )OzM v  are given by the 
equations (scalar components of the polar moment): 
 

( )
( )
( )

Ox z y

Oy x z

Oz y x

M v yv zv

M v zv xv

M v xv yv

= −

= −

= −

,                          (27) 

 
and the components of vector v , by equation: 
 

x y zv v i v j v k= + + ,                           (1′′ ) 
 

It is noted that the polar moment is calculated for connected vectors as well: 
 

( ) ,OM v r v r OP= × = ,                      (28) 
 
in this case point P being the point of application of the connected vector v . 
 

6. DETERMINATION OF THE RESULTANT SUPPORT DEPENDING 
ON THE RESULTANT MOMENT 
  
We can see in &3 that in order to be able to determine the support of a vector 

with the help of the polar moment, the respective vector and its moment have to be 
perpendicular. This means that in the present case as well, in order to be able to apply 
the calculation relations for determining the resultant support, function of the resultant 
moment, these two vectors cannot be given in any way, they have to be perpendicular 
one upon the other. 

The resultant and the resultant moment of a sliding vector system to which the 
reduction has been made to a point (pole), are reduction elements of the torsor for 
reducing the system 

The scalar product between the resultant of the vector system R  and the 
resultant moment of the vector system M , that is, R M⋅  (also called the scalar 
invariant of the vector system, or auto-moment, or the second invariant of the system) 
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is constant. 
The set of vectors for which, reduction of the scalar invariant R M⋅  being 

made, is null, that is, 0R M⋅ = , forms a particular system of vectors. 
Since the scalar invariant is null, it results that vector R and M  are 

orthogonal, and therefore, the competing, coplanar and parallel vector systems are 
considered particular force systems. Thus, equations (26) from &5 become: 
 

2 2 2

2 2 2

2 2 2

,

y z z y
x

x y z

z x x z
y

x y z

x y y x
z

x y z

R M R M
x R

R R R
R M R M

y R
R R R

R M R M
z R

R R R

λ

λ λ

λ

⋅ − ⋅
= + ⋅

+ +

⋅ − ⋅
= + ⋅ ∈

+ +

⋅ − ⋅
= + ⋅

+ +

 ,                (29) 

 
where λ is a real parameter, and xM , yM , zM  are scalar components (projections on 

axes) of the resultant moment M  : 
 

x y zM M i M j M k= + + ,                         (30) 

And the resultant vector components R , are given by the equation: 
 

x y zR R i R j R k= + + ,                          (31) 
 

Function of the particular type (case) of the vector system, the components of 
the resultant R  and of the resultant moment M  will be particularized accordingly as 
well. 

As an example, for determining the 
support of the resultant of a parallel vector 
system, we shall consider the following 
application. 

A rigid cube is given in Fig. 5, with 
side a on which the vector system works ( 
sliding – since the forces that act on a rigid are 
sliding vectors) forces F1=F2=P, 
F3=F4=F5=2P. 

It is required to determine the support 
of the system resultant, function of the 
resultant moment of the vector system. 

Scalar components are determined for 
R  and M  and the following table is drawn 

(Table 1): 

 
Fig. 5. System of forces 
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1. Components of R  și M  
 Fx,i Fy,i Fz,i MOx,i MOy,i MOy,i 

F1 0 0 -P 0 Pa 0 
F2 0 0 -P -Pa 0 0 
F3 0 0 2P 2Pa -Pa 0 
F4 0 0 2P Pa -Pa 0 
F5 0 0 2P 0 -Pa 0 
Σ 0 0 4P 2Pa -2Pa 0 

hence: 
 

4 , 2 2R Pk M Pai Paj= = −


,                     (32) 
 

Introducing the values obtained in equations (29), we obtain: 
 

( ) ( )
2 2 2

0 0 4 2 0 2 0 24 2 0 00, 0, 4
16 16 16

P Pa Pa PaP Pax y z P
P P P

λ λ λ
⋅ − − ⋅ − − ⋅⋅ − ⋅

= + ⋅ = + ⋅ = + ⋅

 
whence 
 

, , 4
2 2
a ax y z Pλ= = = ,                       (33) 

The last relation from equations (33), 4z Pλ=  is an identity, since 
 
 

( )
2 2

4

416

Pk xi yj zkR r z
PR P

λ
⋅ + +⋅

= = =  

 
whence: 
 

4 4 ,
4
zz P P z z
P

λ= = ⇒ ≡  

 
Thus, the resultant support is the 

crossing line of planes x=a/2 parallel with yOz 
and y=a/2 parallel with plane xOz. 

Fig. 6 represents resultant R  and its 
support.  

 
Fig. 6. Resultant support 

Result verification is made by determining the central axis of the system with 
the help of the equation: 
 

x z y y x z z y x

x y z

M yR zR M zR xR M xR yR
R R R

− + − + − +
= =  
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( )
( )

2 4 0 0 0 02 0 4
0 0 4

4 2 4 0 2 4 0 / 2

4 2 4 0 2 4 0 / 2

Pa y P x yPa z x P
P

P Pa y P a y y a

P Pa x P a x x a

− + − ⋅ + ⋅− − ⋅ + ⋅
= = ⇒

⇒ − = ⇒ − = ⇒ =

⇒ − + = ⇒ − + = ⇒ =

,       (34) 

 
7. CONCLUSIONS 

 
The paper presents aspects regarding determining the support of a sliding 

vector system resultant, depending on the resultant moment of the vector system, 
followed by an application example for which the obtained results have been verified. 
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