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Abstract: The paper presents certain aspects regarding reduction of sliding vectors, 
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1. INTRODUCTION 
 
As it is known, a vector is a physical quantity defined by three properties: 

numeric value, direction and sense. The direction of a vector is a line in the space of 
existence of a vector that is parallel with the vector. The line that is colinear with the 
vector, that is, the line obtained by prolonging the vector beyond the origin and 
extremity of the vector, is called support line (axis of the vector).  

The versor of a vector axis is the vector the length of which is equal to the 
measurement unit of the respective vector. The versor specifies a positive sense on the 
vector axis. If the vector has the same sense with the versor, its algebraic value is 
positive, if the sense is opposite to the versor, its value is negative. 

By vector module, the module of its algebraic value is understood, a positive 
number equal to the length of the vector related to the measurement unit. 

Substituting the concept of numeric value with the module and concept of 
direction with the support line, one can say that a vector is defined by three properties: 
module, support line and sense. 

 In classical mechanics, according to the origin type, the following vector 
categories (classes) are defined: free vectors, the support line of which can take any 
position in space, parallel with the given direction, the application point (origin) not 
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being specified; sliding vectors, the support line of which is stable in space and the 
application point (vector origin) is free on the support line; connected vectors, the 
support line of which is stable in space and the application point is fixed on the support 
line. 

 
2. SLIDING VECTORS 

 
Sliding vector model corresponds to the action of forces on solid rigid bodies 

(that cannot go out of shape).  A force acting on a solid rigid body produces the same 
effect, irrespective of the point of force application on the support line, considered 
fixed in relation to the body. Therefore, the forces acting on a solid rigid body present 
themselves as sliding vectors and fall into this category of vectors. 

Several forces acting on a solid rigid body form a system of forces.  
If two different force systems, successively acting on a free solid rigid body, 

always found in the same state of movement, identically modifies the state of motion 
of the body, then the two systems are equivalent from the point of view of mechanical 
movement. If two different force systems, successively acting on a solid rigid body 
immobilized by bonds, determine the same reactions in the bonds applied to the body, 
then the two systems of forces are equivalent from static point of view. 

In the case of a mixed situation, if the rigid body is submitted to bonds without 
being immobilized, the equivalent systems of forces will determine the same reactions, 
acting successively, in the bonds applied and the same modification of the state of 
movement of the body. 

The transformation of a system of forces into an equivalent system has as 
objective simplification of the system, that is, its replacement with a simpler system. 
This operation is called reduction of the system of forces. 
 

3. REDUCTION OF SLIDING VECTORS 
 
One of the basic operations of classical mechanics is the substitution of the 

system of forces applied to a solid rigid body with the simplest system that produces 
the same results (effects) in respect of mechanical movement, that is, the simplest 
equivalent system. The operation by which a system of forces (sliding vectors) is 
replaced by the simplest equivalent system is called reduction. Reduction of a system 
of forces applied to a solid rigid body, considered as system of sliding vectors, means 
its replacement with the simplest possible system that produces the same effect from 
mechanical point of view on the body. 

There are three types of simple vector systems: system made of a single sliding 
vector (single vector); system made of two parallel sliding vectors, equal in module, 
and of opposite senses (couple of vectors); system formed of two sliding vectors with 
con-concurrent and non-parallel supports in space (torsor per se). 

Beside the three types of sliding vector systems in classic mechanics, two 
particular cases of sliding vector systems are studied as well, coplanar vector systems 
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and parallel vector systems that can be coplanar or non-coplanar, respectively. These 
particular systems of sliding vectors arise in the static and dynamic study of solid rigid 
bodies, and in the case of Resistance of Materials discipline as well. 

In the case of any system of sliding vectors related to a tri-orthogonal 
benchmark, the problem of establishing the simple system with which it is equivalent 
arises; that is, which leads to the same result from mechanical point of view on a solid 
rigid body. For this, the sliding vector system characteristics are established by 
calculation, in relation to the considered benchmark. 

In a tri-orthogonal benchmark, the resultant, and the resultant moment are 
called characteristics of a system, in relation with the origin and scalar product between 
the resultant and the resultant moment (the second scalar invariant or the scalar of the 
torsor): 
 

; ;O OR M R M⋅                                                      (1) 
 

In the case of any system of sliding vectors related to a tri-orthogonal 
benchmark, the reduction operation, the replacement of the system with the simplest 
equivalent system, effectively means calculation of the torsor in any pole, in particular 
pole O, the origin of the benchmark to which the system is related: 
 

{ },O OR Mτ =                                                        (2) 
 

Out of the characteristic of simple systems of sliding vectors, the paper further 
presents only the characteristics of the system made up of two sliding vectors with non-
concurrent and non-parallel supports in space (torsor per se), related to a tri-orthogonal 
benchmark. 

We consider the system of vectors, torsor per se, 
1F  and 2F  with (∆1) and (∆2) support lines, non-

concurrent and non-parallel in space (any in space): 
 

{ } ( ) ( )1 2 1 2 1 2, , , 1S F F u u= ∆ ∩ ∆ =∅ ⋅ ≠ ±       (3) 
 
where   (∆1) and (∆2) lines versors were noted 1u  and 2u  
 

1 2 0R F F= + ≠                           (4) 

 
Fig. 1. Torsor per se 

 

( ) ( )1 2 1 1 2 2 0O O OM M F M F r F r F= + = × + × ≠                            (5) 
 

where ( )1 1 1 1,r OB B= ∈ ∆  and ( )2 2 2 2,r OB B= ∈ ∆  
From (4) and (5) for the scalar torsor we obtain: 

 

( ) ( )1 2 1 1 2 2OR M F F r F r F⋅ = + ⋅ × + ×                                    (6) 
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( ) ( ) ( ) ( )
( ) ( )

1 1 1 1 2 2 2 1 1 2 2 2

1 2 2 2 1 1

OR M F r F F r F F r F F r F

F r F F r F

⋅ = × + × + × + × =

= × + ×
               (7) 

since the first and last mixed product in (7) are equal with zero, having two identical 
factors each. 

According to the mixed product properties, we further have: 
 

( ) ( ) ( ) ( )1 2 2 1 1 2 1 2 1 2 1 1 2 2 0OR M F r F F r F F r r F F B B F ⋅ = × − × = − × = ⋅ × ≠       (8) 
 
since the three vectors are non-coplanar and non-parallel, two by two. 

The resultant of a torsor per se is a free vector, not having a specified support 
line. 

In conclusion, based on equations (4), (5) and (8) the following result can be 
enounced regarding the characteristics of the simple system of sliding vectors related to 
a tri-orthogonal benchmark, or a system of torsor per se, 0; 0; 0O OR M R M≠ ≠ ⋅ ≠ . 
 

4. ASPECTS IN CASE OF REDUCTION OF THE TORSOR PER SE 
 

The paper further approaches the problem of the central axis of a system of 
sliding vectors that is reduce to a torsor per se. 

The equation: 
 

( ) 2: ,O
C

R M
r R

R
λ λ

×
∆ = + ∈                                   (9) 

 
represents the vectorial equation of a line parallel with the direction of the resultant. 

The central axis of a sliding vector system is the locus of points C in the range 
of definition of vectors in relation to which the calculated resultant moment is parallel 
with the resultant vector, this moment having minimum value.   

It is known (according to the second theorem of equivalency), that any system 
of sliding vectors can be reduced, by elementary operations of equivalency, to one of 
the simple systems of sliding vectors (torsor per se, single vector or couple of vectors) 
or, in a particular case, can be balanced (equivalent of zero). 

Two systems of sliding vectors, which act successively on a solid rigid body, 
are equivalent among themselves, if one can be obtained from the other by a 
succession of elementary operations of equivalency. The term elementary shows that 
these operations cannot be decomposed in other simple ones. 

Thus, according to the second theorem of equivalency, any system of sliding 
vectors is equivalent to a system of two vectors having as supports any line in space. 

Due to this fact, we shall consider bellow such a system, made up of vectors  
1F  and 2F , the non-parallel supports of which ( )1∆  and ( )2∆ go through points 1B  
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and 2B  (Fig. 1). 
 

{ } ( ) ( )1 2 1 1 2 2, , ,S F F B B= ∈ ∆ ∈ ∆ , 
 

The analytical expressions of vectors 1F  and 2F , and the coordinates of points 

1B  and 2B  in any benchmark are known.  

Relating the system { }1 2,S F F=  to a pole O (in particular being the origin of 

the benchmark), the elements of the reduction torsor are resultant R , and the resultant 
moment OM . 
 

( ) ( )1 2 1 2, , 0O O O OR F F M M F M F R M= + = + ⋅ ≠  
 

The problem still remains of determining the common perpendicular of the 
support lines ( )1∆  and ( )2∆ . 

For this we note with ( )1 1A ∈ ∆  and ( )2 2A ∈ ∆  the points that comply with the 
conditions 
 

( )1 2 1A A ⊥ ∆  and ( )1 2 2A A ⊥ ∆  
 

And we note with ( )∆  the common perpendicular of the support lines, that is, the line 
determined by points 1A  and 2A  (Fig. 1). 

Relating the vectors to origin O, the following vectorial equations can be 
written: 
 

1 1

1 1

2 2

2 2

1 1
1 1

1 1 1 1

2 2
2 2

2 2 2 2

A B
A B

A B
A B

r r B A
r r F

B A F

r r B A
r r F

B A F

λ
λ

λ
λ

= + ⇒ = +
= 

= + ⇒ = +
= 

,   1 2, Rλ λ ∈ ,                       (10) 

 
here r  represents the position vector of the point, indicated by index. Determination of 
points  1A  and 2A  is reduced to finding the scalars 1 2,λ λ . 

Since we considered that 1A 2A  is the common perpendicular of the support 
lines of vectors 1F  and 2F , we can write: 
 

1 2 1 1 2 20, 0A A F A A F⋅ = ⋅ =  
 
or 
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( ) ( )2 1 2 11 20, 0A A A Ar r F r r F− ⋅ = − ⋅ = ,                                (11) 
 

Subtracting from equations 10), the first equation from the second, we obtain: 
 

2 1 2 1 2 2 1 1A A B Br r r r F Fλ λ− = − + − ,                                  (12) 
 

From (2) and (3) results: 
 

( )
( )

2 1

2 1

2 2 1 1 1

2 2 1 1 2

0

0

B B

B B

r r F F F

r r F F F

λ λ

λ λ

 − + − ⋅ =


− + − ⋅ =
, 

 

or, substituting the difference  
2 1B Br r−  cu 1 2B B : 

 
2

1 2 1 2 1 2 1 1

2
1 2 2 2 2 1 1 2

0

0

B B F F F F

B B F F F F

λ λ

λ λ

 ⋅ + ⋅ − =


⋅ + − ⋅ =
, 

 
This being an algebraic system with unknown 1 2,λ λ . 

The determinant of the system is calculated: 
 

( ) 222 2
1 2 1 2 1 2 0F F F F F F∆ = − ⋅ = × ≠ , 

 

since vectors 1F  are non-parallel: 
 

( ) ( ) ( )
( ) ( ) ( )

2
1 1 2 1 2 1 2 2 1 2

2
2 2 1 2 2 1 2 1 2 1

B B F F B B F F F

F B B F F F B B F

∆ = − ⋅ + ⋅ ⋅

∆ = ⋅ − ⋅ ⋅
, 

 
It results: 

 

( ) ( ) ( )2
1 2 1 2 2 2 1 2 11

1 2
1 2

F F B B F F B B F

F F
λ

⋅ ⋅ − ⋅∆
= =
∆ ×

,                     (13,a) 

( ) ( ) ( )2
1 1 2 2 1 2 1 2 12

2 2
1 2

F B B F F F B B F

F F
λ

⋅ − ⋅ ⋅∆
= =
∆ ×

,                          (13,b) 

 
by substituting 1λ  and 2λ  in (10) we obtain the position vectors of points 1A  and 2A . 
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Relative to pole O, the equation of the central axis of the system 

{ }1 2,S F F= is: 
 

( )
( )2: ,O

C
R M

r R
R

λ λ
×

∆ = + ∈  

 
Further, we shall preferably determine equation of the central axis with the 

help of the torsor calculated in relation to the pole (point) 1A , { }1 1
,A AR Mτ = . 

 

( )
( )

1

2: ,A
C

R M
r R

R
λ λ

×
∆ = + ∈ ,                                  (14) 

 
where:  
 

( ) ( ) ( )
1 1 1 1 11 2 1 2 2, , 0A A A A AR F F M M F M F M F R M= + = + = ⋅ ≠  

 
we have: 
 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1 11 2 2 1 2 1 2 2

1 1 2 2 2 1 2 2

2
1 2 1 2 1 1 2 2 2 1 2 2 1 2 2

2 2
1 2 1 2 2 1 2 1 2 2 1 2

A AR M F F M F F F A A F

F A A F F A A F

F F A A F A A F F A A F A A F

F F A A F A A F F F A A

× = + × = + × × =

= × × + × × =

= ⋅ − ⋅ + − ⋅ =

 = ⋅ + = ⋅ +  

, 

 

since 1 2 1 1 2 20, 0A A F A A F⋅ = ⋅ =  
Substituting the result obtained in equation (14), we have: 

 

( )
( )

( )
( )

2
1 2 2 1 2

1 22
1 2

: ,C

F F F A A
r F F

F F
λ λ

 ⋅ +  ∆ = + + ∈
+

 , 

 

( ) ( )1 1 2 1 2: ,C r p A A F Fλ λ∆ = ⋅ + + ∈ ,                         (15) 
 
where the scalar was noted: 

( )
( )

2
1 2 2

1 2
1 2

F F F
p

F F

 ⋅ +  =
+

, 
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If we determine the equation of the central axis with the help of the reduction  

torsor in relation to point 2A , { }2 2
,A AR Mτ = , following and analogous calculation, 

we obtain: 
 

( ) ( )2 2 1 1 2: ,C r p A A F Fλ λ∆ = ⋅ + + ∈ ,                         (16) 
 
where we noted the scalar: 
 

( )
( )

2
1 2 1

2 2
1 2

F F F
p

F F

 ⋅ +  =
+

, 

 
We notice that we have: 

 

( )
( )

( )
( )

( ) ( )
( )

( )
( )

2 2
1 2 2 1 2 1

1 2 2 2
1 2 1 2

2 2 2
1 1 2 1 1 2

2 2
1 2 1 2

2
1

F F F F F F
p p

F F F F

F F F F F F

F F F F

   ⋅ + ⋅ +      + = + =
+ +

+ ⋅ + +
= = =

+ +

, 

 

Which means that 1 1 2p A A⋅ and 2 2 1p A A⋅  are vectors with the peaks in the same point, 
which we note C, point that belongs to the common perpendicular 1A 2A . 

In conclusion, the equation of the central axis in any benchmark with origin O: 
 

( ) ( )1 2: ,C Cr r F Fλ λ∆ = + + ∈ ,                                   (17) 
 
can be written, where Cr  is the position vector of point C, and: 
 

1 1 1 2C Ar r p A A= + ⋅ , conform (15) 
 
or 
 

2 2 2 1C Ar r p A A= + ⋅ , conform (16) 
 

If we take in consideration: 
2 11 2 1 2 2 11, A Ap p A A r r A A+ = = − = − , for the 

position vector of point C we obtain: 
 

1 22 1C A Ar p r p r= ⋅ + ⋅ , 
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where 1p  and 2p  are given by equations (15) and (16). 
The central axis is a line perpendicular on the common perpendicular (Δ) of 

vectors 1F  and 2F , having in common with those point C. 
We consider the following example. 
For the simple system formed of the 

two sliding vectors with non-concurrent and 
non-parallel supports in space in Fig. 3, the 
intersection points of the central axis with the 
common perpendicular of the two vectors is to 
be determined. 

The side of a cube a and the 
magnitudes of the two vectors 

1 2 2F F P= = are given. 
Thus we have: 

 

1 2, ,F Pj Pk F Pj Pk= − + = +  
 

Fig. 3. System of vectors 

 
The resultant and the resultant moment are: 

 

1 2 0 1 12 , ( ) ( )O OR F F Pk M M F M F aPi aPj aPk= + = = + = − +  
 

The equation of the central axis is: 
 

Ox z y Oy x z Oz y x

x y z

M yR zR M zR xR M xR yR
R R R

− + − + − +
= =  

 
whence: 
 

2 2
0 0 2

aP yP aP x P aP
P

− + −
= =  

 
and the equation of a line parallel with Oz obtained by the intersection of planes 

/ 2y a=  and / 2x a=  is obtained. 
In order to determine the common point between the common central and 

perpendicular axis of the two vectors, we shall use the previously determined 
equations. 

λ1 and λ2 being determined, the position vectors of the intersection points of the 
common perpendicular (Δ) with the supports (Δ1) and (Δ2) of the two vectors will be 
written. 
 

( ) ( )
1 1 1 1 / 2 / 2A Br r F ai a j a kλ= + = + +  

( ) ( )
2 2 2 2 / 2 / 2A Br r F a j a kλ= + = +  
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For the position vector of the intersection point between the central axis and 

the common perpendicular of the supports of the two vectors, this equation is used: 
 

1 22 1C A Ar p r p r= ⋅ + ⋅ , 
 
where 1p  and 2p  are given by the equations (15) and (16). 
 

( )
( )

2
1 2 2

1 2
1 2

1
2

F F F
p

F F

 ⋅ +  = =
+

   și   
( )

( )

2
1 2 1

2 2
1 2

1
2

F F F
p

F F

 ⋅ +  = =
+

 

 
whence: 

 

1 1
2 2 2 2 2 2 2 2 2C

a a a a a a ar ai j k j k i j k   = + + + + = + +   
   

, 

 
5. CONCLUSIONS 

 
The paper presents aspects regarding 

reduction of sliding vectors, namely in the case of a 
system formed of two sliding vectors with mom-
concurrent and non-parallel supports in space (torsor 
per se), namely the intersection between the central 
axis is a perpendicular line on the common 
perpendicular.  

The characteristics of the system of sliding 
vectors have been determined by calculation in 
relation with the benchmark considered, the 
resultant, the resultant moment in relation with the 
origin and scalar product between the resultant and 
the resultant moment (the second scalar invariant or 
the scalar of the torsor). 

   

 
Fig. 4. Intersection between (Δ) 
and (ΔC) 
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