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Abstract: This paper deals with the buckling stability of stiffened plates under 

longitudinal compression with simply supported conditions within the framework of plate 
theory. The main objective of the finite element analysis is to investigate some behaviors of 
these thin-wall structures. The structure of stiffened plate is widespread, from which the version 
used in this paper has already been optimized for uniaxial compression, some design variables 
and the cost of welding, and the objective function to be minimized is defined as the material 
cost. The effect of stiffener damage caused by corrosion can be investigated in FE models of the 
optimized stiffed plate structure. The buckling shape modes for damaged structures can be 
compared with the damaged-free ones so that the changes in load capacity can be predicted. 
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1. INTRODUCTION 

 
Stiffened plates have many applications in civil, aerospace, automobile and 

marine structures. These plates subjected to uniaxial or biaxial compression, in-plane 
bending and shear, lateral pressure, hydrostatic pressure, concentrated or distributed on 
a line, uniformly distributed static, dynamic loads and used in high temperature many 
times over their lifetime need to be strengthened to increase the load-carrying capacity 
of plates by using stiffeners. In the case of moving machines, dynamic analysis is 
essential when examining the structural elements of the machine [4, 5]. 

Buckling can also occur even though the applied loads in structures are well 
below those needed to cause failure in them. In order to increase the strength and avoid 
any buckling of stiffened plates, buckling analysis of thin-wall structures is used to 
predict various modes of buckling and derived the critical buckling load. The out of 
plane buckling deformations of the base plate reach a critical level when the structure 
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is subjected to critical loads and the further loading may cause significant deformations 
[2]. The effect of initial imperfections and residual welding stresses are considered in 
design methods are predicted loads likely to act on such type of structure. 

Our design constraints of the investigated stiffened plate structure are the 
follows [6]: 

• Global buckling of the stiffened plate. The effect of initial 
imperfections and residual welding stresses are considered by defining 
buckling curves for a reduced slenderness. 

• Single panel buckling. This constraint eliminates the local buckling of 
the base plate parts between the stiffeners. 

• Local and torsional buckling of stiffeners. These instability 
phenomena depend on the shape of stiffeners. The actual torsional 
buckling stress can be calculated in the function of the reduced 
slenderness. 

• Distortion constraint. Large deflections due to weld shrinkage should 
be avoided. 

In general, an efficient technique is the finite element analysis (FEA) for 
buckling analysis of stiffened plates to investigate the effect of initial geometric 
imperfection on the load displacement response and so on. Furthermore, FEA can be 
applied to the study of the effects of corrosion or other damage in stiffened plate 
structures focusing on elastic buckling strength [8]. In addition, leaving one of the ribs 
out of the FE model the influence of damage can also be investigated in simple models. 
In such cases, the simplification is allowed if the corrosion concentrates along the base 
of a rib, as that becomes a non-load-bearing element and provided that the basement 
plate is intact. With this approach, there are significant differences among the results 
from modified FE models of the stiffened plate which are also easily comparable to 
examine the change in load capacity. As the corrosion effects also change the natural 
frequencies of the structure, a linear perturbation analysis for the damaged stiffened 
plate [3], [6] would need to be performed again and new FE models created. Therefore, 
it is important that the structures are properly designed and constructed taking into 
account corrosion damage during their lifespan. 

 
2.  STRUCTURAL PARAMETERS OF STIFFENED PLATE MODEL 
 
Our investigation is made on the buckling stability of the thin-wall structure 

made up of a base plate and some stiffeners with simple support (SSSS) conditions on 
all the edges of the base plate, subjected to uniaxial compression on two edges of the 
plate through numerical simulation. As shown in Fig. 1, the lengths of the plate along 
the x-axis and y-axis are denoted by L  and B , respectively. Besides, the plate 
possesses a uniformly tf thickness along the z-axis. The displacement boundary 
conditions on the edges at 0x = and x L=  are given in the form. 
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and the boundary conditions on the edges at 0y =  and y B=  are prescribed according 
to 
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where ( , )w w x y=  is the displacement in the z direction. 

Fig. 1 shows a stiffened plate loaded by uniaxial compression. The magnitude 
of the compression force is 7N=1.2 10 N× . Thus, a uniformly distributed static load 
can also be applied to FEA boundary conditions. 

 

 
Fig. 1. Longitudinally stiffened plate loaded by uniaxial compression 

 
The given geometrical data of the base plate are width 6000B mm= and length  

4000L mm= . The stiffened plate structure is made of steel, having Young’s modulus 
of 5E  2.1 10 MPa= × , Poisson’s ratio of 0.3, density of 9 37.85 10 t / mmρ −= × . The 
yield stress is 235y MPaσ = . 

Fig. 2. Dimensions of a flat stiffener 
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The optimum results for different fabrication costs calculated by Excel Solver 
NLP which uses a gradient method where the unknowns – tf (the thicknesses of the 
base plate), and ts the stiffener and φ-1 (the number of the ribs) – are limited in size and 
the welding technology is SAW – see details in Fig. 2 and paper [6]. 

 
Table 1. Optimum results for the plate with flat stiffeners 

Number of the 
stiffeners (ϕ-1) 

tf  
[mm] 

ts  
[mm] 

hs  
[mm] 

ϕ 

5 15 13 182 6 
9 11 12 168 10 

28 5 10 140 29 
 

The higher production cost gives a thicker base plate with fewer ribs. An 
optimum result for the material cost is shown in Table 1 thus, the dimensions and the 
layout of the ribs are given for analyses [6]. 

 
3. ANALYSIS RESULTS OF THE STIFFENED PLATES 
 
The main concept is the subdivision of the model of structure into non-

overlapping components of simple shaped geometry called finite elements with well-
defined stress displacement relationships. In the numerical simulation, the plates with 
stiffeners are divided into finite elements and a conventional shell model, an 8-node 
shell element (S8R) is employed for buckling investigation in the finite element 
analysis (FEA). More detailed descriptions of finite element procedures can be found 
in Bathe’s book [1]. 

 

 
Fig. 3. Abaqus model of a stiffened plate with boundary conditions 

 
It is also noted that the base plate is subjected to a uniformly distributed static 

load 1 /f N mm=  along the edges paralleled to the y-axis (on the edges at 0x =  and 
x L= ) and uniformly distributed static loads which are properly converted based on 
Table 1 are subjected on the corresponding edges of the stiffeners so that the loading is 
applied as a “shell edge load” for buckling mode shapes in the commercial program 
Abaqus [8] as shown in Fig 3. 
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In general, the eigenvalue-eigenvector problem for the n-DOF undamped 
system is given follows: 

 

( )2 ,ω− =K M q 0     (3) 
 

where K  denotes the stiffness matrix, M  is the mass matrix. The natural frequency ω  
and the eigenvector q  are the unknowns. The buckling mode shapes are determined in 
a similar way by solving a linear equation system in the software Abaqus [8]. In 
structural engineering, the basic form of the linear buckling analysis is given by 
 

( 1,2, , ) ,i i i i nλ= =KΦ SΦ     (4) 
 

where iΦ  is the ith mode shape and so the ith column of the eigenvector’s matrix, iλ  is 
the eigenvalue belonging to eigenvector iΦ  and S  is the stress-stiffness matrix. To 
investigate the eigenvalue buckling prediction, a Lanczos iteration method is 
performed to extract eigenvalues – for details, see the book [1]. For the stiffened plate 
structure with SSSS support conditions on four edges and 5 stiffeners, the buckling 
mode shape according to the first eigenvalue ( 1 2762.8λ = ) is shown in Fig. 4. In this 
case, the maximum load (the critical buckling load) can be estimated to prevent 
structural instability or collapse. For simplicity, the estimated critical buckling load is 
given from the first eigenvalue 2762.8 N/mm multiplied by a scale factor of 1. In most 
cases, we need to perform a number of analyses and use the first few buckling mode 
shapes to investigate the sensitivity of structures to imperfections. That means that the 
ideal geometry is perturbed by scales displacement fields deriving from the buckling 
mode shapes. 
 

 
Fig. 4. The first buckling mode shape with SSSS support condition ( 1 2762.8λ = ) 
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For the shell edge load magnitude which is calculated from the compression 
force 7N=1.2 10 N× , the effective stresses and displacement magnitude in direction z 
for stiffened plate model with the imperfection magnitude is taken as 0.5%, 1.0% and 
1.5% of the base plate thickness are easy to compute. The maximum values that 
occurred in the structures are listed in Table 2. The Abaqus is capable to perform a 
load-displacement analysis and to investigate the effect of initial geometric 
imperfection on the load-displacement response using the Riks algorithm [8]. The 
strongly nonlinear stability problems and post-buckling problems, both with stable and 
unstable behavior can be also solved by using this method. 

 
Table 2. The maximum values of displacements and effective stresses 

ϕ-1 imperfection 
maxu  

 [mm] 
maxσ  

 [MPa] 

5 none 0.000 117.8 
 0.5% 0.048 118.7 
 1% 0.096 119.5 
 1.5% 0.144 120.4 

9 none 0.000 142.6 
 0.5% 0.031 143.2 
 1% 0.063 143.8 
 1.5% 0.094 144.4 

28 none 0.000 173.4 
 0.5% 0.002 173.6 
 1% 0.003 173.7 
 1.5% 0.005 173.9 

 
Provided that some ribs are considered non-load-bearing elements due to 

damage, they are omitted from FE models. The simplification of damages is only 
allowed if the damage is concentrated along the entire length of a rib, provided that the 
plate remains intact. The influence of damage can be easily modeled by simply 
omitting some numbered ribs so that some typical cases can be compared in the 
following three tables in terms of buckling eigenvalues. In general, the buckling 
eigenvalues are used to estimate the critical load. Fig. 1 shows the numbering of the 
stiffeners and the first column of Table 3 denotes the abandoned ribs in the FE model. 
It is clear from the tables that the load-bearing capacity of the stiffened plate is 
significantly reduced if one of its ribs is completely damaged. In such cases the critical 
load is also expected to be halved, making the plate unstable at 7N=1.2 10 N× . 



Numerical investigation of optimized stiffened plates with damaged stiffeners 61 

Table 3. The eigenvalues for the 5 ribbed arrangement in the case of damaged stiffeners 
No. 

1λ  2λ  3λ  4λ  5λ  

 2762.8 2813.9 2825.1 2852.4 3003.8 
1 819.42 1076.6 1380.5 2313.8 2741.3 
2 901.23 1142.0 1423.7 2343.1 2746.2 
3 903.83 1144.2 1424.4 2343.3 2747.5 

1-2 370.13 535.40 1157.1 1231.6 1688.9 
2-3 437.07 558.23 1169.3 1315.1 1735.0 

1-2-3-4-5 83.330 308.10 396.45 515.73 749.62 
 
The first five eigenvalues belonging to the buckling mode shapes can be seen 

in Table 3 in which the numbers of missing stiffeners are denoted in column 1.  
 

Table 4. The eigenvalues for the 9 ribbed arrangement in the case of damaged stiffeners 
No. 

1λ  2λ  3λ  4λ  5λ  

 2752.1 2869.9 3010.9 3027.8 3160.5 
1 884.92 909.40 1218.9 1692.0 1848.5 
2 1015.6 1095.7 1289.2 1657.5 1744.2 
3 1018.7 1105.2 1290.3 1691.8 1744.7 

1-2 387.83 589.29 653.65 952.07 1363.4 
2-3 446.98 618.41 730.89 971.30 1463.1 

1-2-…-8-9 32.885 121.59 156.39 203.51 295.89 
 
Significant changes are observed in load capacity due to damaged stiffeners, 

however, note that the model is overestimated the effect of damage. There is possible 
to develop the FE model, to include other forms of corrosion [9].  

 
Table 5. The eigenvalues for the 28 ribbed arrangement in the case of damaged stiffeners 

No. 
1λ  2λ  3λ  4λ  5λ  

 2739.2 2830.2 3064.8 3449.4 3889.3 
1 1486.8 1508.5 1586.0 1603.5 1756.9 
2 1868.5 1905.6 1965.9 2005.4 2167.8 
3 1872.1 1907.0 1970.6 2006.3 2186.9 

1-2 652.00 663.30 740.83 781.26 865.91 
2-3 809.32 849.38 869.69 951.01 1098.9 

1-2-…-28 6.1876 22.891 29.452 38.337 55.765 
 
The eigenvalues for the two other arrangements can be seen in Tables 4 and 5 

where the larger numbers of stiffeners reduce the decrease in eigenvalues for damaged 
plates. 
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4. CONCLUSIONS 
 

This paper is intended to present an implementation of the buckling analysis 
for an optimized stiffened plate to investigate the influence of damage over simple 
models. The finite element analysis is a powerful technique that is enabled to compare 
the different optimized plates with flat stiffeners. 3D models of the plates are 
considered using the 8-noded doubly curved thick S8R shell elements where the ideal 
geometry can be perturbed by scales displacement fields deriving from the buckling 
mode shapes. The eigenvalues show a significant decrease if any of the stiffeners are 
damaged so that the extent of the reduction in load capacity compared to the damaged-
free plates can be seen. Therefore, it is important that the structure is properly designed 
and provided with an adequate corrosion protection. 
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