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 Abstract: The specific energy consumption is mainly influenced by kinematics and 

dynamic measures of vertical transport installations as well as by the compatibility of different 

composing parts and their subcomponents. The optimization of kinematics and dynamic 

parameters characterizing a transport cycle is decisive considering the energy consumption. 

Also considering the operation of the vertical transport installations, as well as the character of 

the variation of kinematics and dynamic parameters during a race, it has been considered that 

one of the adequate optimization methods of these parameters is the calculus of variations. In 

order to apply this calculus, the definition of the optimization functional and restrictions is 

imposed. One of the basic performance parameters of the operation of the vertical transport 

installations is the specific energy consumption during a cycle. It therefore means that the 

optimization of the transport cycle related to this parameter may be realized using a functional 

with a function under the integral depending on the electric energy consumption during a race. 

 

 

Keywords: optimization; unbalanced installations; statically balanced installation; 

dynamically balanced. 

 

 

 

1. GENERAL CONSIDERATIONS REGARDING THE CALCULUS OF 

VARIATIONS 

 

The purpose of the calculus of variations is the discovery of functions which 

may reach extreme values (either maximum or minimum), for some measures 

depending on them also called functional. The functional may be considered a 

generalization of the analysis of some functions of a certain type in which the role of 

the variable being played by another function, such as: 
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Namely the defined integral of expression f which depends on the independent 

variable x, the searched function y(x) and its derivative y. While functional (1) using 

the following sum: 
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The issue is therefore the determination of the extreme of the function Y(y1, y2, 

..., yn) of more variables. Higher as n will be as precise the approximation will be, 

getting closer to solving the problem of variations. If y(x) represents the extreme of 

functional (1), then the following is necessary: 
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Relation also called Euler’s equation. In the calculation of variations, functions 

are seldom met, which depend not only on the first one but also on the superior order 

derivatives of the determined function. 

The aspects of these functions are: 
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Therefore, the curve reaching an extreme value needs to satisfy the following 

equation: 
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For the case where functional (5) depends only on the first and second order 

derivatives and has the following form: 
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Function y = y(x) which realizes the extreme of functional   is determined, 

and y and y’ are given in x = x0 and x = x1. Examining the effect on functional   of a 

variation a of y with a small quantity i which for function i with its fixed ends satisfies 

the condition y = y’ = 0 when x = x0 and x = x1, the first variation of functional   is: 
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If function  takes an extreme value, then expression (7) becomes null. 

Integrating in parts the second and the third term in expression (7) in order to eliminate 

variations y’ and y’’, the following is obtained: 
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If the limit conditions are imposed y = y’= 0 for x = x0 and x = x1, then 
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The above integral needs to be cancelled for all the admissible y values, 

imposing that the expression in the parenthesis of relation (9) becomes zero: 
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This expression is also known as Euler - Poisson’s equation. It is a fourth-

degree differential equation, the solving of which gives extreme values of function  . 

 

2. ESTABLISHING THE OPTIMISATION FUNCTIONAL FOR 

    SINGLE CABLE VERTICAL TRANSPORT INSTALLATIONS 

    POWERED BY AN ASYNCHRONOUS MOTOR 

 

The actual peripheral force is: 
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Because function F(t) varies during different phases, the integral 
T

dtF
0

2  is 

solved separately for each phase: 
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According to the general equation of the dynamics of vertical transport 

installations, the force at periphery of the reeling organism is expressed using the following 

relation: 
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The functional based on which the electric energy consumption may be minimized 

during a race, may be established as follows: 
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In order to simplify expression (4) of the peripheral force, the following 

transformations are made: 
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where gQkA u  ; gqqD )( 1 ; only the positive sign has been considered for the 

acceleration. 

By replacing the expression of the force it results: 
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Using the relation between the actual force and the quantity of heat developed 

within the reeling of the motor during a transportation cycle, the actual force 

expression (equivalent) may be used as an optimization criterion. Therefore, between 

functional (1) and the actual force there is the following relation: 
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The beginning and the end of a transport cycle are characterized by the 

following conditions: 
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3. RESTRICTIONS ON THE TRANSPORT CYCLE 

 

In optimizing the parameters of the transport cycle the respect of a series of 

technical prescriptions is imposed in order to ensure the continuous operation in full 

safety conditions. The variation of kinematics parameters (speed and acceleration) 

during a transport cycle is defined by the diagram of speed (tachogram) as well as by 

the diagram of the acceleration, characterized by the relations: 
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Conditions (19, a) and (19, b) define the requirements regarding movement 

and speed: at the end of the cycle, the space undergone by the transport enclosures has 

to be equal to the length of the transport race; the speed, both at the beginning of the 

movement as well as at the end of the race has to be null. Conditions (19, c) and (19, d) 

are defined by the technical prescriptions regarding the speed limit and acceleration 

with their maximum admissible values. Condition (19, e) limits the maximum value of 

the variation of the force within the time unit, seldom used measure during the 

automated control of vertical transport installations. Condition (19, f) is imposed by the 

cooling off of the electric motors through their own ventilation. The power of the 

actuating motor needs to satisfy the following criteria: 
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where:   is the overload admissible coefficient (for asynchronous motors; for 

continuous current motors); Fmax is the maximum value of the peripheral force 

appearing during the transport race; Pmax is the power corresponding to the maximum 

force. 

Two models based on relations (17) and functional (1) may be used for the 
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optimisation: 

• The optimisation model with the limit conditions (19, a) and (19, b); 

• The optimisation model with all the kinematics restrictions imposed by the 

motor given by relations (17) and (18). 

The first model covers criterion (11) and the limit conditions (16). A practical 

model needs therefore to consider all the restrictions, such as the second one foresees. 

Therefore the amendment of functional (11) and the optimisation criterion (15) 

needs to be made, dividing the transport cycle in several according to the expression: 
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where: n is the number of phases of the extraction cycle; tii is the beginning of all n 

phases; tfi is the ending of all n phases. 

 

4. THE EXTREMES OF THE OPTIMISATION FUNCTIONAL; 

    EULER-POISSON EQUATIONS OF THE FUNCTIONAL 

 

The establishment of the function characterizing the law of variation of space 

x(t), considering that the integral (1) represents a superior order function related to the 

first derivative, may be made using the Euler-Poisson equation. The equation (23) 

adapted for the present case is: 
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Obtaining therefore: 
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D4
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Considering that the difference in weight between the transport cable and the 

balance one is characterized by D, three cases may be distinguished in solving the 



Minimizing the Actuating Power of Multi-Rope Hoisting Machinery 

 

119 

above presented equation 

a) D=g(q-q1)>0  - unbalanced installation; the roots of equation (25) are real; 

b) D=g(q-q1)<0   - dynamically balanced installation; the roots of equation (25) 

are imaginary; 

c) D=g(q-q1)=0   - statically balanced equation. 

For D = 0, based on expressions (17) and (24) the following are obtained: 
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Unbalanced installation (D > 0)  

For this case, the solutions of equation (26), space, speed, acceleration and the 

third derivative of space in relation to time are the following: 
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where: 
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 ; ;  Ci – integration constancies, i = 1; 2; 3; 4. 

 

Statically balanced installation (D = 0)  

For this case, the solutions of equation (26) are: 
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where Ci are integration constancies, i = 1; 2; 3; 4. 

 

Dynamically balanced equation (D < 0)  

In this case, the solutions of equation (26) may have the following form: 
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where: ;
2


 Ci – integration constancies, i = 1; 2; 3; 4. 

 

4.1. Optimum transport cycle with limit conditions  

 

Mathematically speaking, the optimization of the transport cycle consists in 

founding the function x(t), the law of movement, ensuring the minimum of the integral: 
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The case of unbalanced installations (D > 0)  

Based on the solution of the equation given by expression (15) and the initial 

conditions, a four-equation system is formed in order to determine the integration 

constancies. Following the solution of this equation system, the integration constancies 

are: 
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The case of statically balanced installations (D = 0) Proceeding analogically, 

based on the solution of the equation given by expression (28), the integration 

constancies are: 
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The case of dynamically balanced installations (D < 0) Considering the 

relations (17), the values of the integration constancies are: 
         









132

4

1

2

1

3
3

1221

1331
4

C;CC

C
a

a

a

a
C;

baba

baba
C

      (33) 

 

where: 
         

tsinb;TcosTTsinb

TcosTTsinTab

;tcosHa

TsinTa;TcosTTsina









32

2
1

3

21

     (34) 

 

4.2. The optimum transport cycle with all technological restrictions  

 

Functional (10) will be adjusted with all the restrictions (6) imposed by the 

kinematics installation. Considering a three-period transport cycle, where the second 

period is characterized by constant speed, the limit conditions for each period may be 

explained as follows: 
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During the second period (constant speed operation) 
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During the third period (the deceleration period) 
 

0321321

2121

3212121







)ttt(v)ttt(x

v)tt(v)tt(x

H)ttt(x;hh)tt(x

max       (37) 

 

where: 

- ti - represents the duration of the corresponding periods; 

- hi – is the distances undergone by the extraction containers during different 

periods. 

In the same time, relations (35), (36) and (37) also need to comply with the 
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following requirements: 
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5. ADOPTED OPTIMIZATION MODEL 

 

According to the expression (22), the following optimization model based on 

the equivalent force is adopted: 
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The conditions from the start and the end of the cycle: 
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The requirements the actuating motor needs to comply with: 
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Restrictions imposed on periods: 

 

For the starting period: 
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For the second period of constant speed operation: 
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For the deceleration period: 
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  (43) 

 

Considering the expressions of x , x  and x  , the aspect of functional (16) for 

different balance degrees will be: 

 

Unbalanced installation (D > 0) 
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    (44) 

 

The Ci integration constants are determined using relations (30) and (31). 

 

Statically balanced installation (D = 0) 
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The Ci  integration constants are determined using relation (32). 

 

Dynamically balanced installation (D < 0) 
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The Ci integration constants are determined using relations (32) and (33). 
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Therefore, considering the three phases of the transport cycle, the numerator of 

expression (38) of the equivalent force may be written as follows: 
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      (47) 

 

Considering the large volume of calculations, the digital integration of the 

components of expression (47) is imposed. 

 

6. EXAMPLE 

 

Based on the proposed method a C language software has been developed. 

Software which was tested for an extraction installation with cages with the following 

parameters: 

‐practical load extracted during a race: Qu = 6000 kg; 

‐extraction depth: H = 480 m; 

‐the sum of reduced masses: m = 66368 kg; 

‐specific weight of the extraction cable: q = 5,77 kg/m; 

‐specific weight of the balance cable: q1 = 6,72 kg/m; 

‐maximum acceleration at starting: a1max = 0,8 m/s2; 

‐maximum acceleration in breaking: a3max = 1 m/s2; 

‐maximum extraction speed: vmax = 9,35 m/s; 

‐operational period of extraction containers: T = 62 s; 

‐pause period between races: tp = 20 s; 

‐transmission efficiency:  = 0,92.  

In order to obtain a maximum efficiency, the following have been considered: 
 

602 ,
T

t
  

 

and 
 

T,tt  2031  
 

Eliminating q1 for the unbalanced case and considering q1 = q for the statically 

balanced one, minimum values of the equivalent force and the actuating power have 

resulted with approximately 10% smaller than the classic method.    

Figure 1 presents a print screen of the results obtained. 

 

7. CONCLUSIONS 

 

Analyzing the optimization trials of electric operation of extraction 
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installations, presented in the specialty literature, it is observed that these are valid only 

for trapezoid tachograms (with constant accelerations and linear variation of speed in 

extreme periods). There is no certainty that this type of variation is optimum for 

ensuring the value of the minimum power. Imposing from the beginning a trapezoid 

form of the tachogram does not have any scientific justification, being made 

empirically; 
 

 
Fig.1. Print screen of obtained results for an extraction installation with cages 

 

In order to minimize the actuating power of the extraction installations, the 

method of the calculus of variations is used, establishing an adequate mathematical 

model; 

In order to use the proposed optimization method, the definition of the 

optimization and restriction functional was imposed. The optimization functional is 

based on the peripheral force of the cable actuating organism results from the general 

equation of dynamics; 

The solutions of Euler-Poisson equations of the optimization functional differ 

depending the degree of balance of the installation;  
The important determination volume for integrating the optimization 

functional implies the use of computers. The software developed in C language and 

also experimented proved itself to be a fast tool for practical calculations; 

The proposed method is an operative and precise one and may serve to verify 

and design the extraction installations, determining the optimum functional parameters. 
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