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Abstract: Although the models of finite elements have efficiency and versatility, in 
the analysis of the mechanical strains and tensions which appear in the case o meshing gear 
teeth, the variation of the contact force and the dynamical load in the process of meshing are 
usually neglected. We have shown aspects of the parameters change for pairs of cycloid 
gearwheels in the process of meshing in static and dynamic conditions, as well as the algorithm 
for the contact method of the finite element. For a certain rotation speed and torsion torque of 
the load, with the help of the computerized simulation method, we can determine the variation 
of the contact force on the side (lateral side) of the meshing gearwheels. The values for 
mechanical contact tensions can be calculated taking into consideration the elastic deformation 
of toothed mechanisms, the rigidity variation of the meshing teeth. 
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1. INTRODUCTION  
 

Because of the complexity of the meshing teeth transmission mechanisms, the 
constant improvement requirements and increasing lifespan, a great interest arose in 
understanding the behavior of the transmission of these toothed mechanisms in many 
areas of engineering design as well as in the manufacturing process. The static and 
dynamic performances of the toothed mechanism transmission are influenced by many 
factors that include: geometrical parameters, fabrication errors, variations of the tooth 
strain and rotation speed, tooth deformation, tooth mechanism impact due to the 
meshing variation between one and two pairs of teeth, axel rigidity, assembling 
rigidity, etc. In theory, the system of meshing tooth mechanisms is usually modeled as 
a dynamic system described by linear or nonlinear functions. An analytic solution that 
answers through load effects, gear rigidity, rotations speeds as well as cushioning, 
could generally be obtained by calculating the meshing rigidity and cushioning 
coefficients for meshing toothed gears. 
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Many research cases, using the method of the finite element for meshing 
toothed gears, have provided numerical solutions for load distribution in the case of 
contact for lateral sides of the tooth flank, as well as gear tooth deformation. Trying to 
understand the dynamics of mechanisms requires researching the variation and 
distribution of contact loads, the impact of meshing gears as well as tensions resulted 
with the passing of time. As shown in the following paragraphs analyses have been 
made that define the simulation of meshing toothed gears. 

Then the algorithm of the finite static contact element for the meshing system 
with toothed gearwheels is presented as a solution for the contact force for the 
gearwheel tooth in the meshing process. 
In this algorithm the deformation conditions, the contact force an the Columbian 
friction force have the purpose of describing the static meshing conditions for  the teeth 
of toothed gears, while the Cholsky method as well as Newmark’s algorithm have been 
used for the static force. To improve the numerical analysis of the solution, an equation 
depending on the gears’ teeth was established and a graphic program for finite 
elements was used. With a certain rotation speed and torsion torque of the finite 
element we obtain the variation of the contact force on the toothed gear’s tooth, 
throughout the process. 
 

2. MODELING THE PARAMETERS FOR THE 
    MESHING TEETH PAIRS 

 
We establish a number of models for finite contact elements in the case of 

toothed gears to assess the variation of the contact force in the meshing process and to 
find the solutions for each contact point along the action line. 

These models should respect the geometrical principle. As shown in figure 1, 
the global Cartesian coordinates (0 – X ,Y , Z) of the meshing tooth pairs are the same 
as the local coordinates of the lead wheel (2) (0 – X2 ,Y2 , Z2) while the coordinates (0 – 
X1 ,Y1 ,Z1) are local coordinates of the leading wheel (1). The local contact coordinates 
of the meshing points are (0 – n, t, s). 

The coordinates of the meshing point “i” can be written: 
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where: dk – dividing diameter of the two gearwheels; α – pressure angle; rik – meshing 
point “i” radius from the tooth flank of the two meshing wheels; Bip – distance between 
the meshing point ”i” and the meshing pole “p” from the meshing line. 
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In the meshing process the initial contact appears in “A” and with the spin of 
the gearwheel the contact point will move along the meshing line. To establish the 
contact of the models of the finite element in the meshing process, contact point “i” 
and the matching contact point “j” for another teeth pair can be determined if the 
model of the finite element represents the contact of two teeth pairs. 

After calculating the two contact points “i”,”j” the program allows the 
discretization with finite elements, elements that can be generated parametrically or 
automatically. The dividing numbers for finite elements of the teeth can be random. 
The coordinates of the points of the finite elements for other sections parallel with the 
transversal section are calculated by expanding the discretization of fixed elements 
along the axial direction, of the discredited gearwheel.  

The situation shown above is valid for modeling gearwheels with teeth in an 
involute profile. As follows in fig.1 and fig.2 we present a sketch of a meshing system 
for cycloid gearwheels and their coordinates. 

In fig. 2 we show the modeling with finite elements for one single pair of teeth 
in contact, corresponding to different positions on the meshing line in the case of 
gearwheels with teeth with cycloid profile. 
 

  
Fig. 1. Cartesian coordinates of gearwheels Fig. 2. Finite elements modeling of the 

cycloidal gearwheels 
 

 
3. STATIC, DYNAMIC AND CINEMATIC CONDITIONS FOR 
    THE MESHING TEETH PAIRS 

 
In the meshing process, contact between teeth flank changes as position from 

one pair of teeth to two pairs of teeth. Certain static, dynamic and cinematic conditions 
for the discretized pairs of teeth can be observed through local contact coordinates (0 – 
n, t, s). Presuming that no separation appears at the contact point “i” corresponding to 
two knots in contact for each tooth, the values of motion and speed for two knots in 



Zoller, I. 238 
 
contact should be the same on the normal direction “n” in the local coordinates system, 
the law of Columbian friction acts on the tangent directions (t,s). 

This is why the meshing conditions for the teeth, both static, dynamic and 
cinematic in the time unit Δt, along the movement can be represented by: 
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where: R , R , (e = n, t, s) are the contact forces for each tooth on n, t, s – 
directions of the coordinates axes of the local contact system; μ – Columbian friction 

coefficient; ,  and  ,  are the speeds and movements of the 
normal direction of the local contact coordinates; β – relative slide direction of the 
meshing teeth pair. 
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For the static contact analysis the time variation Δt and the speed are neglected 
in formulas 3÷6. Considering that the separation could take place in the moment of 
meshing impact of different teeth pairs and because of manufacturing errors of the 
teeth flanks and of the vibromechanical  resonance phenomenon, in the meshing 
process are used as detection criteria in interactive calculus for the static and dynamic 
contact analysis: 
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Separation 
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Relative slide 
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Where  ,  (e = n, t) are the relative movements along directions n, t. tt
e
Δ+δ t
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4. FLEXIBILITY FORMULAS FOR THE METHOD OF 
    THE FINITE CONTACT ELEMENT 

 
Although the two parts of the leading and lead meshing gears can satisfy the 

rigidity situation of the finite element (7) in the case of static contact analysis for 
simulating the dynamic answer of the meshing gear teeth in time many factors such as 
elastic deformation, inertial force, rotation speed variation due to changes in meshing 
teeth pair influence the numeric results. The dynamic equation for the method of the 
finite element in the case of meshing teeth pair neglecting the cushioning forces in a 
moment in time t + Δt comes out of the formula: 
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The direct integration algorithm in the case of the finite element method is used 
as a solution of the dynamic equation of meshing gears with teeth based upon two 
hypothesis’: 1) the numerical solution of the dynamic equation is obtained on the 
discreet time interval Δt; 2) the variation of movement, speed and acceleration for each 
gear mesh at the random time interval Δt is presumed to have linear acceleration 
relations. With these two suppositions, the dynamic behavior solution for the meshing 
process can be obtained by solving a number of static equations in different contact 
points of the meshing teeth pairs along the meshing line in the given time interval. 

In the following lines the Newmark’s integration algorithm is used, with the 
next linear acceleration relation: 
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time t + Δt, t; δ, α – are parameters of Newmark’s integration algorithm. 

If we replace equation (9) and (10) in equation (8) the dynamic equation for 
the meshing gears at the time t + Δt can be written as the following equation of similar 
shape as the rigidity equation in the static analysis of the finite element. 
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where  and  are respectively, the effective rigidity matrix and the effective 
load vector in the direct integration algorithm. 
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Using the dynamic, cinematic and static conditions for the static analysis of 
contact points for the above mentioned mashing gearwheel pairs, the dynamic contact 
force R (or the static contact force Rtt

i
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i) and the movement U  (or Utt
i
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i) can be 
obtained by solving the effective  rigidity equation (11) (or equation (7) for static 
analysis) and then the speed and movement vectors can be also obtained through  (9) 
and (10). 

To improve the calculus with iterative finite element of the contact analysis we 
use a flexibility formula of the contact finite element in which the static, dynamic and 
cinematic conditions are contained by the matrix’ sub-coefficients. By developing a 
modified Choleshy scheme, for elimination by decomposing the solution matrix of the 
linear equation and calculating the corresponding changes for the sub-coefficient 
matrixes’, the flexibility matrix equation at the meshing teeth’s contact point can be 
derived: 
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exterior load and rotation speed variation; C , C , D , D  and D  - are 
sub-coefficient matrixes corresponding to the static, dynamic and cinematic conditions. 
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As soon as the flexibility matrix equation is obtained, the solution of the 
iterative calculus in the case of static or dynamic analysis for the meshing process is 
reduced to the contact points of the gearwheel teeth in such a way that a numeric 
simulation of the behavior in static and dynamic regime of the meshing teeth with 
three-dimensional modules of the finite element can be made.  
 

5. STATIC CONTACT ANALYSIS PROGRAM FOR 
    MESHING GEAR TEETH 

 
According to the static contact analysis algorithm for meshing gear teeth 

shown above, a numeric modeling program is developed, including the parameters of 
meshing gearwheel teeth; static and cinematic definitions; iterative calculation of the 
static contact force and calculation of mechanical tensions for meshing gearwheel 
teeth.  
 

Table 1. Main parameters for gearwheels 
 

Number 
of teeth 

Distance 
between 
axes, a 

Module, 
m 

Pressure
angle 

 Coverage 
degree e

Transmission
ratio 

 Tooth 
width

Rotation 
speed, 
rot/min

Torsion 
torque 

T1 
(motor) 

Friction 
coefficient, 

μ 

z1 z2

10 11 334,215 31,83 20o 1 
11
10

 
80,75 5,62 100 0,1 

 
In order to increase efficiency concerning the evaluation of the static behavior 

for meshing gearwheel teeth a post-processing is necessary to verify the meshing gears 
with a finite element, presenting the mechanical tensions and specific deformations, 
etc. 
 

6. STATIC CONTACT ANALYSIS PROGRAM FOR 
    MESHING GEAR TEETH 

 
According to the static contact analysis algorithm for meshing gear teeth 

shown above a part of the finite element graphic program is shown, in which are 
included: the modeling parameters for the teeth of the cycloidal meshing gearwheels; 
static definitions; iterative calculation of static forces and calculation of deformation 
and tensions. 

The main stages for solving contact problems are shown in figure 3 as follows: 
- introducing entry data which consists in making the meshing drawing (or 

import of a DXF file from ACAD); introducing the mechanical 
characteristics (elasticity module, Poisson coefficient, specific weight, 
friction coefficient, etc.); discretization of the meshing gears, applying 
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movement restrictions, introducing efforts; 
- the pre-processing procedure which helps find the eventual flaws consists 

of presenting the contour of the gearwheel, presenting the discretization, 
presenting the efforts and applied restrictions; 

- calculating the rigidity matrix for each element; 
- assembling the rigidity matrix; 
- solving the movement equation system; 
- calculating deformation and tension within elements; 
- exit data that consist in a file of numeric results and a file of graphical 

results following the post processing procedure (presenting the 
discretization, presenting the tension state after different theories, 
presenting specific deformations, presenting movement, etc.). 

 

 
Fig. 3: The main stages for solving contact problems 
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7. MODELLING CYCLOIDAL MESHING GEARWHEELS WITH  
    THE FINITE ELEMENT METHOD 

 
In order to make the model for cycloidal meshing gearwheels, starting from the 

execution drawing the two wheels in contact were made as two surfaces formed by 242 
points between which 214 straight lines have been drawn. In figure 2 is shown the 
discretization mode for gearwheels through plane triangular elements with a constant 
thickness g = 75 mm. 

The calculus model has 2113 knots and 3658 triangular elements with three 
knots, modeling which generated 6937 equations. The idealized model elements of the 
defined structure on discredited knots are called finite elements. For the analysis of 
tension states and deformations the analysis step was 1/10 of the meshing angle: 
figures A.1…A.10…B.1…B.11. 

 

          
A1                                     A2                                    A3                                    A4 

 

             
A5                                   A6                                     A7                                A8 

 

                      
A9                                                    A10 

Figure 4: State of tension between the leading and the lead wheels in the dividing steps 
 

For the calculus of the tension distribution an exterior load with a unitary moment 
was used. 
 

8. RESULTS AND DISCUSSIONS 
 

To validate the computer simulation method including the previously analyzed 
aspects we present the static contact analysis for the teeth of cycloidal meshing 
gearwheels in the meshing process with the algorithm of the finite element method. 
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B1                                  B2                                     B3                                 B4 

 

                
B5                                 B6                                   B7                                  B8 

 

                  
B9                                             B10                                         B11 

Fig. 5. State of tension on the lead wheel at the meshing with the rack pin 
 
The geometric parameter, torsion torque of the load for this numerical analysis 

is shown in table 1. 
Using the static contact analysis program we obtain the static tension 

distribution on the teeth profile and the pin in the contact area, as shown in figures 
A.1…A.10 and B.1…B.11. 

Figures A.1…A.10 shows the tension state after the theory of Von Mieses 
capitalizing on the 10 mesh dividing steps between the leading wheel and the lead 
wheel, the maximum tension on the lead wheel being 10,4 × 10-6 N/m2 at the meshing 
entrance and at step 4 according to fig. A.4. the maximum tension at the tooth base on 
the leading wheel is 9.98 × 10-6 N/m2.  

Figures C1…C9 show the tension distribution on the lead wheel following the 
sequence of steps corresponding to each sectioning plane. Figures D1…D7 show the 
same tension distribution for the meshing leading wheel with the rack pin. 

Figures B.1…B.11 shows the tension state after the Von Mieses’ theory 
capitalizing on the 10 dividing steps of the mesh between the lead wheel and the pin, 
the maximum tension being 6.41 × 10-6 N/m2. The tooth of the intermediate wheel was 
sectioned by eight planes. Figures D.1…D.7 show the tension distribution following 
the sequence of steps corresponding to each sectioning plane. The distances between 
the sectioning lines are considered of unitary value. 



Parameters Modelling for Cycloidal Meshing Gear Teeth  245
 

 
C1                                         C2                                                C3 

 

 
C4    C5           C6 

 

 
C7    C8            C9 

Figure 6: Tension distribution for the lead and leading wheel 
 

The bending tension at the tooth base for the lead and leading wheels reaches 
the maximum when the contact point on the tooth flank is situated on the tooth top in 
the area with one single tooth pair in contact, the cause being the integrated effects of 
the changes in normal contact forces as well as the distance from the contact point to 
the tooth base on its flank. 
 

9. CONCLUSION 
 
Using the developed computer simulation procedure, the static and dynamic 

contact force distribution and stress of finite element model on different contact point 
along the line of action have been obtained, which can be used to evaluate the static 
and dynamic characteristics of meshing gear teeth in the process of engagement.  

In this research, static and dynamic behavior of meshing gear teeth with the 
consideration of the geometric parameters, elastic deformation, and stiffness variation 
of meshing tooth pairs, rotating speed and driving torque are analyzed. And the 
influence of other factors such as manufacturing error can be reached if the tooth flank 
can be precisely determined for generating respective finite element models. 
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D1    D2    D3 

 

     
D4    D5   D6 

 

 
D7 

Fig.7. Tension distribution for the lead wheel and the rack pin 
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