### SIMULATION INSURED RESULTS BY PURCHASING A LIFE INSURANCE

### ANA PREDA, MIRELA MONEA, LORAND BOGDANFFY \*

**Abstract:** In this paper we are doing a comparative analysis, using Eviews 8.00, for a unitlinked product, depending on the annual premium paid by the policyholder. It reviewed the situation when the insured survives till the end of the insurance contract and then he receives the account value. We presented the contract evolutions through three different investment programs. There were considered three different risk investment programs 2, 4, 6, on a scale from 1-6.

Key words: insurance market, premium, account value, risk, unit- linked products

#### JEL CLASSIFICATION: G01, G14, G22

### **1. ITRODUCTION**

The products with investment components are complex products but are riskier than traditional life insurance. This type of insurance has two components: the protection component - life insurance and investment component, through access to investment programs.

We will analyse three types of investment programs:

- investing the 100% in shares the investment premium, very high risk 6 (on a scale of 1 to 6);
- investing the investment premium 50% in fixed income instruments (government bonds, bonds, deposits), 50% in shares, in units of risk, 4;
- investing the 100% investment premium in fixed income instruments (government bonds, bonds, deposits) risk class 2.

Premiums paid for investments are converted into units within investment programs that the policyholder has chosen from the beginning. The amount of the

<sup>\*</sup> Ph.D., University of Petroşani, Romania, ana preda79@yahoo.com Assoc. Prof., Ph.D., University of Petroşani, Romania

Ph.D. Student, University of Petroșani, Romania

account is calculated by multiplying the number of units in the account of the insurance contract by the selling price valid for that time. We will analyse a unitlinked product with the following features: age of insured person 36 years, female gender, frequency of payment - annual insurance premiums, amount insured in case of death 16,000.00 lei, period of payment of insurance premiums 20 years, investment premium 1.800,00 lei, primary insurance premium 1.940,16 lei.

## 2. THE EVOLUTION OF THE CONTRACT THROUGH INVESTMENT PROGRAMS USED

People with a long-term investment horizon, willing to gamble at a high level, looking for long-term returns, will opt for a 6-risk investment program. The objective of the program is to achieve long-term capital growth by investing 100% in shares. The amount of the account at the end of the contract is 73,258 lei. From the point of view of the insured's earnings, it is the most advantageous but not recommended in times of financial crisis, being too risky.

| Year | Amount of<br>premiums<br>(for<br>investments) | Amount of<br>premiums<br>(for death) | Insured<br>amount (for<br>basic<br>insurance) | Predicted<br>yiel | Account<br>value | Death<br>Benefit | Repurchase |  |
|------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|-------------------|------------------|------------------|------------|--|
| 1    | 1800                                          | 140                                  | 16000                                         | 5.10%             | 1777             | 17777            | 0          |  |
| 2    | 3690                                          | 287                                  | 16753                                         | 5.10%             | 3474             | 20227            | 0          |  |
| 3    | 5675                                          | 442                                  | 17506                                         | 5.10%             | 5429             | 22935            | 4399       |  |
| 4    | 7758                                          | 604                                  | 18259                                         | 5.10%             | 7543             | 25802            | 6448       |  |
| 5    | 9946                                          | 774                                  | 19015                                         | 5.10%             | 9825             | 28840            | 8665       |  |
| 6    | 12243                                         | 953                                  | 19762                                         | 5.10%             | 12287            | 32049            | 11063      |  |
| 7    | 14656                                         | 1141                                 | 20505                                         | 5.10%             | 14940            | 35445            | 13651      |  |
| 8    | 17188                                         | 1338                                 | 21241                                         | 5.10%             | 17796            | 39037            | 16445      |  |
| 9    | 19848                                         | 1545                                 | 21973                                         | 5.10%             | 20867            | 42840            | 19456      |  |
| 10   | 22640                                         | 1762                                 | 22702                                         | 5.10%             | 24167            | 46869            | 22698      |  |
| 11   | 25572                                         | 1990                                 | 23435                                         | 5.10%             | 27710            | 51145            | 26186      |  |
| 12   | 28651                                         | 2230                                 | 24161                                         | 5.10%             | 31511            | 55672            | 29935      |  |
| 13   | 31884                                         | 2482                                 | 24885                                         | 5.10%             | 35584            | 60469            | 33963      |  |
| 14   | 35278                                         | 2746                                 | 25604                                         | 5.10%             | 39947            | 65551            | 38285      |  |
| 15   | 38842                                         | 3023                                 | 26323                                         | 5.10%             | 44618            | 70941            | 42922      |  |
| 16   | 42584                                         | 3315                                 | 27044                                         | 5.10%             | 49613            | 76657            | 47891      |  |
| 17   | 46513                                         | 3621                                 | 27760                                         | 5.10%             | 54954            | 82714            | 53215      |  |
| 18   | 50639                                         | 3942                                 | 28473                                         | 5.10%             | 60660            | 89133            | 58915      |  |
| 19   | 54971                                         | 4279                                 | 29186                                         | 5.10%             | 66754            | 95940            | 65016      |  |
| 20   | 59519                                         | 4633                                 | 29902                                         | 5.10%             | 73258            | 103160           | 73258      |  |

 Table 1. The evolution of the insurance contract investing 100% in shares

Source: author's work with the EQUITY investment program - NN Romania

People with a low risk appetite, who want to know their investment safely but who also seek opportunities to get better return on a fixed income investment program, will opt for investing in a diversified portfolio, as shown in Table 2, in which case the client has opted to invest the investment premium equally in shares and fixed income securities, the value of the account at the end of the contract is **70,828** lei.

| Year | Amount of<br>premiums<br>(for<br>investments) | Amount of<br>premiums<br>(for death) | Insured<br>amount (for<br>basic<br>insurance) | Predicted<br>yiel | Account<br>value | Death<br>Benefit | Repurchase |  |
|------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|-------------------|------------------|------------------|------------|--|
| 1    | 1800                                          | 140                                  | 16000                                         | 3.90%             | 1765             | 17765            | 0          |  |
| 2    | 3690                                          | 287                                  | 16753                                         | 4.00%             | 3442             | 20195            | 0          |  |
| 3    | 5675                                          | 442                                  | 17506                                         | 4.10%             | 5378             | 22884            | 4362       |  |
| 4    | 7758                                          | 604                                  | 18259                                         | 4.40%             | 7465             | 25724            | 6387       |  |
| 5    | 9946                                          | 774                                  | 19015                                         | 4.40%             | 9712             | 28727            | 8573       |  |
| 6    | 12243                                         | 953                                  | 19762                                         | 4.40%             | 12130            | 31892            | 10929      |  |
| 7    | 14656                                         | 1141                                 | 20505                                         | 4.40%             | 14728            | 35233            | 13466      |  |
| 8    | 17188                                         | 1338                                 | 21241                                         | 4.40%             | 17518            | 38759            | 16197      |  |
| 9    | 19848                                         | 1545                                 | 21973                                         | 4.40%             | 20511            | 42484            | 19132      |  |
| 10   | 22640                                         | 1762                                 | 22702                                         | 4.40%             | 23719            | 46421            | 22286      |  |
| 11   | 25572                                         | 1990                                 | 23435                                         | 4.40%             | 27155            | 50590            | 25670      |  |
| 12   | 28651                                         | 2230                                 | 24161                                         | 4.40%             | 30833            | 54994            | 29300      |  |
| 13   | 31884                                         | 2482                                 | 24885                                         | 4.40%             | 34766            | 59651            | 33190      |  |
| 14   | 35278                                         | 2746                                 | 25604                                         | 4.40%             | 38970            | 64574            | 37357      |  |
| 15   | 38842                                         | 3023                                 | 26323                                         | 4.40%             | 43461            | 69784            | 41816      |  |
| 16   | 42584                                         | 3315                                 | 27044                                         | 4.40%             | 48254            | 75298            | 46586      |  |
| 17   | 46513                                         | 3621                                 | 27760                                         | 4.40%             | 53369            | 81129            | 51686      |  |
| 18   | 50639                                         | 3942                                 | 28473                                         | 4.40%             | 58823            | 87296            | 57136      |  |
| 19   | 54971                                         | 4279                                 | 29186                                         | 4.40%             | 64636            | 93822            | 62957      |  |
| 20   | 59519                                         | 4633                                 | 29902                                         | 4.40%             | 70828            | 100730           | 70828      |  |

 Table 2. The evolution of the insurance contract by investing the investment premium 50% in fixed income instruments and 50% in shares

Source: author's work with the MIXT 50 investment program - NN Romania

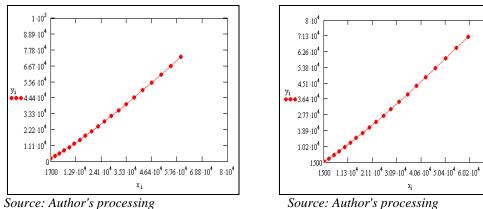
People with low risk and short-term investment horizon who want their investment to be safe will opt for an investment program that will generate long-term capital growth and stable returns by investing 100% in fixed income instruments, as can be seen from table no.3, the value of the account reaches the value of 68,382 lei in the last year of the contract. If it is desired to withdraw the amounts deposited with the related increases it can be ascertained that in the first years 2 there is no redemption value, the penalties being comparable with the value of the investment.

The value of the account at the end of the contract and the insured person's death allowance are much higher, investing 100% in shares, but the risk is adequate. In the crisis, the low-risk investment program is recommended even if the yield is lower, it is more secure by investing in fixed income instruments.

The insured person would lose much of the investment made if he decides to give up the insurance policy, the redemption value is approaching the value of the account only in the last 2-3 years of the contract, regardless of the investment program chosen.

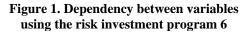
| Year | Amount of<br>premiums<br>(for<br>investments) | Amount of<br>premiums<br>(for death) | Insured<br>amount (for<br>basic<br>insurance) | Predicted<br>yiel | Account<br>value | Death<br>Benefit | Repurchase |
|------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|-------------------|------------------|------------------|------------|
| 1    | 1800                                          | 140                                  | 16000                                         | 2.20%             | 1749             | 17749            | 0          |
| 2    | 3690                                          | 287                                  | 16753                                         | 2.60%             | 3393             | 20146            | 0          |
| 3    | 5675                                          | 442                                  | 17506                                         | 2.70%             | 5271             | 22777            | 4281       |
| 4    | 7758                                          | 604                                  | 18259                                         | 2.80%             | 7297             | 25556            | 6252       |
| 5    | 9946                                          | 774                                  | 19015                                         | 3.10%             | 9507             | 28522            | 8404       |
| 6    | 12243                                         | 953                                  | 19762                                         | 3.60%             | 11880            | 31642            | 10718      |
| 7    | 14656                                         | 1141                                 | 20505                                         | 3.60%             | 14423            | 34928            | 13203      |
| 8    | 17188                                         | 1338                                 | 21241                                         | 3.60%             | 17148            | 38389            | 15870      |
| 9    | 19848                                         | 1545                                 | 21973                                         | 3.60%             | 20063            | 42036            | 18730      |
| 10   | 22640                                         | 1762                                 | 22702                                         | 3.60%             | 23180            | 45882            | 21795      |
| 11   | 25572                                         | 1990                                 | 23435                                         | 3.60%             | 26512            | 49947            | 25077      |
| 12   | 28651                                         | 2230                                 | 24161                                         | 3.60%             | 30069            | 54230            | 28589      |
| 13   | 31884                                         | 2482                                 | 24885                                         | 3.60%             | 33866            | 58751            | 32345      |
| 14   | 35278                                         | 2746                                 | 25604                                         | 3.60%             | 37916            | 63520            | 36359      |
| 15   | 38842                                         | 3023                                 | 26323                                         | 3.60%             | 42232            | 68555            | 40646      |
| 16   | 42584                                         | 3315                                 | 27044                                         | 3.60%             | 46831            | 73875            | 45222      |
| 17   | 46513                                         | 3621                                 | 27760                                         | 3.60%             | 51728            | 79488            | 50106      |
| 18   | 50639                                         | 3942                                 | 28473                                         | 3.60%             | 56940            | 85413            | 55315      |
| 19   | 54971                                         | 4279                                 | 29186                                         | 3.60%             | 62485            | 91671            | 60868      |
| 20   | 59519                                         | 4633                                 | 29902                                         | 3.60%             | 68382            | 98284            | 68382      |

 Table 3. The evolution of the insurance contract by investing the 100% investment premium in fixed income instruments

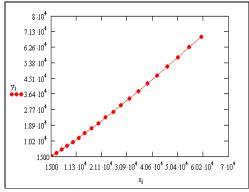

Source: author's work with the BOND investment program - NN Romania

# 3. SIMULATION OF THE EXPECTED BENEFITS OF THE INSURED WITH A LINEAR REGRESSION MODEL

Classic linear regression model is one of the most commonly used statistical techniques in economic analysis. The easiest way to specify a linear regression equation is to specify the list of variables that need to be used in the equation. Having specified the equation further the estimation method must be chosen. In the classic regression model estimation is performed using least squares. Analysis was performed using systems with one input variable and one output variable (SISO), the dependence between the two variables is direct one, linear, almost in all cases analysed. The data series for the sizes involved in this analysis are given in Tables no. 1,2,3. For the system under consideration, we consider the value of the account as the output size (y) and the amount of the investment premium as input size (x).


As we can see, the system analysed is one with a single input variable and a single output variable, the dependence between the two variables being a linear one. For this reason, the model chosen for the correlation between the two sizes is linear, of the following form:

$$y_i = c_1 + c_2 \cdot x_i + e_i, \quad i = 1,20$$
 (1)




Figures 1, 2, 3 represent the dependence between the amount of the account and the amount of the investment premiums.

Source: Author's processing







Source: Author's processing

Figure 3. Dependency between variables using the risk investment program 2

From the above figures, we can see that there is a linear dependence between the two variables, observing the upward trend in the amount of the account versus the sum of the investment premiums. With Eviews 8.00, the parameters of the linear regression model, defined in relation (1), will be determined and the assumptions based on which the chosen model can be validated will be checked. Thus, the linear model for determining the value of the account according to the premium invested in the three types of investment programs determined by using the Eviews program is given by the following relations:

- for the 6 risk scale investment program

$$y = -2646,390367 + 1,23730047 \cdot x \tag{2}$$

 $7.10^{4}$ 

- for the 4 risk scale investment program

$$y = -2320,976 + 1,196237 \cdot x \tag{3}$$

- for the 2 risk scale investment program

$$y = -2072,42491762 + 1,15554626343 \cdot x$$
 (4)

According to the above relationships, we can say that if we increase the investment premium for the last year analysed by 1 leu, the estimated value of the account will increase by 1.27 lei in terms of the first investment program, namely by 1.20 lei and 1.15 lei through the other two investment programs.

In Tables no. 4, 5, 6, are represented both the linear regression model parameter values (column 2) and the values of the applied statistical tests. Thus, we note that the value of R-squared is very close to value 1, the high value of this indicator demonstrating a dynamics of the well-specified account value relative to the amount of investment premiums. The Durbin-Watson test is applied to verify the hypothesis that the residue series is uncorrelated. The calculated value of this test, taken from Tables 4, 5, 6 (Dw between 0.136024 and 0.137439) is compared with its tabulated values. For a significance threshold of 5%, and for a number of 20 observations, the tabulated values of the Durbin-Watson test are d1 = 1, 2 d2 = 1, 41.

By comparing the tabulated values with the calculated value, we can say that the series of residues is correlated. To demonstrate that the model is a good one, we can also apply other tests using Eviews.

In all cases the p-value is above the threshold of 0.05 so the null hypothesis that is here cannot be rejected H0: The residual series is normally again distributed a positive characteristic of the analysed model.

The change in the value of the account determined by the linear regression (green) model with the residue (blue) is shown in Figure 4 (through the risk investment program 6), Figure 5 (through the risk investment program 4) Figure 6 (through Risk Investment Program 2).

| Dependent Variable: Y<br>Method: Least Squares<br>Date: 08/23/15 Time: 11:23<br>Sample: 1 20<br>Included observations: 20<br>Y=C(1)+C(2)*X |                                                                                   |                                                                                              |                                            |                                                                      | Dependent Variable: Y<br>Method: Least Squares<br>Date: 06/30/15 Time: 10:43<br>Sample: 1 20<br>Included observations: 20<br>Y=C(1)+C(2)*X |                                                                                                                                  |                                                                                   |                                                                                              |                                            |                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|
|                                                                                                                                            | Coefficient                                                                       | Std. Error                                                                                   | t-Statistic                                | Prob.                                                                |                                                                                                                                            |                                                                                                                                  | Coefficient                                                                       | Std. Error                                                                                   | t-Statistic                                | Prob.                                                                |
| C(1)<br>C(2)                                                                                                                               | -2646.390<br>1.237300                                                             | 493.1857<br>0.015547                                                                         | -5.365910<br>79.58235                      | 0.0000<br>0.0000                                                     |                                                                                                                                            | C(1)<br>C(2)                                                                                                                     | -2320.976<br>1.196237                                                             | 428.2473<br>0.013500                                                                         | -5.419711<br>88.60839                      | 0.0000<br>0.0000                                                     |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic)           | 0.997166<br>0.997009<br>1212.837<br>26477505<br>-169.3395<br>6333.351<br>0.000000 | Mean depend<br>S.D. depende<br>Akaike info c<br>Schwarz crite<br>Hannan-Quir<br>Durbin-Watse | ent var<br>riterion<br>erion<br>nn criter. | 30135.70<br>22174.74<br>17.13395<br>17.23352<br>17.15339<br>0.136024 |                                                                                                                                            | R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.997713<br>0.997586<br>1053.141<br>19963892<br>-166.5158<br>7851.447<br>0.000000 | Mean depend<br>S.D. depende<br>Akaike info c<br>Schwarz crite<br>Hannan-Quir<br>Durbin-Watse | ent var<br>riterion<br>erion<br>in criter. | 29373.15<br>21432.93<br>16.85158<br>16.95115<br>16.87102<br>0.136362 |

 Table 4. Investment program –risk 6

Table 5. Investment program -risk 4



| Dependent Variable: Y<br>Method: Least Squares<br>Date: 06/30/15 Time: 13:32<br>Sample: 1 20<br>Included observations: 20<br>Y=C(1)+C(2)*X |                                                                                   |                      |                       |                                                                      |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------|-----------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                            | Coefficient                                                                       | Std. Error           | t-Statistic           | Prob.                                                                |  |  |  |  |  |  |
| C(1)<br>C(2)                                                                                                                               | -2072.425<br>1.155546                                                             |                      | -5.541289<br>98.01023 | 0.0000<br>0.0000                                                     |  |  |  |  |  |  |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic)           | 0.998130<br>0.998026<br>919.7288<br>15226220<br>-163.8067<br>9606.005<br>0.000000 | Hannan-Quinn criter. |                       | 28543.60<br>20699.55<br>16.58067<br>16.68025<br>16.60011<br>0.137439 |  |  |  |  |  |  |

Source: Author's processing

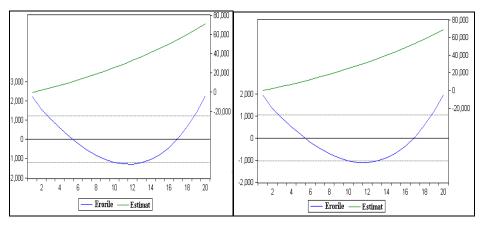
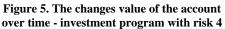




Figure 4. The changes value of the account over time - investment program with risk 6



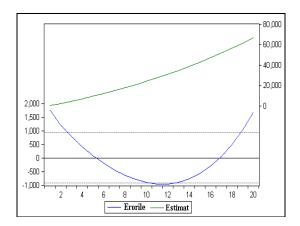



Figure 6. The changes value of the account over time - investment program with risk 2

The covariance matrix of the linear regression model estimators is presented in relations (5) (through the investment program with risk 6), (6) (through the investment program with risk 2):

$$\Omega = \begin{pmatrix} 243232,1796510476 & -6,404397583266227 \\ -6,404397583266227 & 0,0002417223567322038 \end{pmatrix}$$
(5)  
$$\Omega = \begin{pmatrix} 183395,7074214528 & -4,828880072843989 \\ -4,828880072843989 & 0,0001822573093580069 \end{pmatrix}$$
(6)  
$$\Omega = \begin{pmatrix} 139873,69895489 & -3,682928717879241 \\ -3,682928717879 & 0,0001390054564520 \end{pmatrix}$$
(7)

From the above, we can conclude that there is a strong linear dependence between the two variables in the model.

#### **4. CONCLUSIONS**

We have determined the best insurance product, the most financially advantageous for the insured. Due to developments analysed products, the product with the best financial results, at the end of the contract, if the insured survives till the end of the contract, is the unit-linked product using the invitational program, investing 100% shares but the risk assumes by the insured to obtain these results, is the biggest one.

### **REFERENCES:**

- [1]. Briys, E.; De Varenne, F. (2001) Insurance from underwriting to derivatives, John Willey @Sons Ltd
- [2]. Ciurel, V. (2011) Asigurări și reasigurări. O perspectivă globală, Editra RENTROP & STRATON, București
- [3]. Cizek, P.; Hardle, W.; Weron, R. (2005) Statistical tools for finances and insurance, Springer-Verlag, Berlin, Germany
- [4]. De Jong, P.; Gillian Z.; Eller, H. (2008) *Generalized linear models for insurance data*, Cambridge University Press, UK
- [5]. Gourieroux, C.; Jasiak, J. (2007) *The Econometrics of Individual Risk Credit, Insurance, and Marketing*, Princeton University Press, Princeton and Oxford
- [6]. Lomborg, B. (2004) Global Crises, Global Solutions, Cambridge University Press, New York
- [7]. Jungmann, J.; Sagemann, B. (2011) Financial Crisis in Eastern Europe, Gabler Verlag, Germany