
STUDY OF THE MINING PRODUCTION SYSTEMS, PROCESSES AND 
COMPONENTS USING ARTIFICIAL INTELLIGENCE METHODS 
 
Stela Dinescu, Ph.D., Lecturer, Andrei Andras  Ph.D., Lecturer, University of Petroşani  
ROMANIA  
 
 
ABSTRACT: Mining production systems used in both underground and open pit mining consist of serially 
connected elements (winning, hauling, main conveying equipment, transfer devices and stock pile/bunker feeding 
equipment). The whole production system is characterized by the throughput, which depends on the functioning 
state of each element and it is also strongly influenced by randomness and variability of the involved processes. In 
order to correctly simulate and model such systems, probabilistic methods and Artificial Intelligence  approaches 
are used - involving unit operations and equipment as well as the system as a whole - such as Neural Networks, 
Fuzzy Systems, Monte Carlo simulation and the Load Strength Interference method. The obtained results are 
convergent with real data and offer the opportunity for further developments of the wider application of mentioned 
methods in the study of mining production systems. 
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 1. INTRODUCTION  

 
The continuous mining production systems consist 

mainly in a string of equipment starting with winning 
equipment (shearer loader, in case of underground 
longwall mining or bucket wheel excavator in case of 
open pit mining), hauling equipment (armored face 
conveyor in longwall mining or the on-board belt 
conveyor in case of excavators), main conveying 
equipment (belt conveyor in both cases), transfer 
devices, stock pile or bunker feeding equipment [1].   

 This system of mainly serially connected elements 
is characterized by the throughput (overall amount of 
bulk coal respectively overburden rock), which is 
dependent on the functioning state of each involved 
equipment, and is affected also by the process inherent 
variability due to the randomness of the cutting 
properties of the rock. 

In order to model and simulate such production 
systems, some probabilistic methods are applied arising 
from the artificial intelligence approach, involving unit 
operations and equipment, as the overall system as a 
whole, namely the Monte Carlo simulation, and for unit 
operations and equipment the neural network, fuzzy 
systems, and the Load Strength Interference methods.  
 
 2. RELIABILITY ANALYSIS BY 
SIMULATION  
 
In fig 1 the diagram of the monthly production of a 
bucket wheel excavator based production system 
operating in a Romanian open pit mine (Nan, 2007)  is 
presented, while another, presented in fig. 2.  

The first one has a more intensive operating regime 
(throughput larger with about 50% then the second one, 
due to the smaller ratio coal/ overburden produced). 
Also we can see the breakdown total hours are greater 
for the first one then the second one, working mainly in 
overburden rock.   

Starting from the main reliability parameters 
determined on the basis of these recorded data, such as 
MTBF and MTTR, respectively, λ and µ,  the 
exponential distribution associated parameters, rate of 
failure and rate of repair, using the Monte Carlo 
simulation method, we simulated the operating cycles 
during one month.  

This kind of  continuous production system is  
producing a variable material flow until the breakdown 
of an element at the moment  tfi  which causes the stop 
of the system.  After a certain period of time tru, the 
system is repaired and restarts, until the next breakdown 
is produce at the moment tfi+1.  
 In order to perform simulation, the production flow 
can be seen as weighted with a series of Heaviside 
functions containing binary values 1 and 0, the cadence 
of breakdowns, the duration of operating times and the 
duration of repair times  being  random variables.   

The alternating uptimes and downtimes are 
cumulated until they reach the simulation period T.  

The simulation is repeated many times using 
different values for Qm and  σ, describing the variability 
of the production (fluctuations) and for λ  and µ, 
characterizing the random behavior of the cadence of 
uptimes and downtimes. 

The simulation model was realized using MathCAD. 
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Fig. 1. Operation diagram of the Excavator no. 1  
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Fig. 2. Operation diagram of the Excavator no. 2  

time, hours 
Fig. 3 The inherent production fluctuation 

 
By processing recorded data, we use the following input 
valueses:  
 - average monthly production   
  Qmonth med = 357 400 m3/month; 
 - average hourly production  
  Qhour  med = 1117 m3/hour; 
 - monthly production standard deviation  
  σmonth = 96 998 m3/month; 
 - hourly production standard deviation  
  σhour = 303 m3/hour; 
 -average monthly operating time 
   Tfm = 320 hours  /month  
 - working time standard deviation  σtf=91 hours; 
 - overall available time  T= 744 hours ; 
 - Breakdown rate  λ=1/(320/30) = 0,09375; 
 -  repair rate   µ =0.071 
 - Average number of breakdowns  ndef = 30. 
 
 The simulated variability of the production system, 

with above data, considering breakdown-safe operation 
is given in figure 3. This case of simulation has been 
realized an average hourly production Q med hour = 1094 
m3/hour and a standard deviation of  σhour = 302 
t(m3)/hour.  

The state diagram showing the transition cadence 
from operating to downtimes and vice versa is presented 
in fig. 4.  
 

 

 
time, hours 

Fig. 4. Simulated state diagram of the  system 
  
 Superposing the two diagrams (Fig. 3 and Fig. 4) we 
obtain the hourly production diagram which takes into 
account the up and downtimes, as in fig. 5. 

 

 
time, hours 

Fig. 5. Diagram of simulated hourly production during 1 
month 

 
 If we realize a number high enough of iterations, by 
averaging, we obtain the average data near to start input 
data considered. In this way, we calibrate the model to 
reflect the actual situation.  
 Now, we can study different scenarios changing the 
input parameters, as reduction of the average repair 
time, or reducing the fluctuation of the production rate. 
 
 3. STRESS STRENGTH INTERFERENCE  

 
In the literature, [3], the influence of operating regime, 
load, stress, requirement, as independent variables, on 
the safety of work, reliability, probability of failure, and 
degree of damage of the failure as dependent variables 
are considered in the conditional reliability theory using 
the stress-strength interference method.  
 The method is originated in the sizing methods 
based on probability of the variable loaded systems, in 
order to overcome the limits of classical sizing 
procedures.  
 In the frame of the classical method, the yield value 
of strength S and the estimated value of load L are 
defined. It is presumed that L is always less than S, the 
difference S-L being called safety range while the ratio  
S/L is called safety factor.  
 By designing a system based on this theory, the 
reliability of a system is considered infinity, and the 
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probability of failure is equal to zero. The failure 
occurrence after a time period is considered due to the 
decrease of S over time due to the fatigue, or the 
occurrence of an accidental load greater than L.  
 Mining equipment is facing both causes of 
probability of failure due to the randomness of the 
sources of load, accidental overloads and fatigue due to 
aging or wear of components. We propose and 
demonstrate the application of this method to the 
analysis of the safety of operation of mining production 
systems [ 4, 7].  
 In the fig. 6 the principle of the method is presented.  
 The strength S, in general meaning, is a metric of the 
capacity of a component to resist to loads without 
damaging, and has not a constant value, being a random 
variable[5] .  

 
Fig. 6. Principle of the stress-strength interference 

 
 On the horizontal axis we have compatible 
meanings, such as load, requirement, capacity, flow 
rate, in physical values, at yield values. On the vertical 
axis we have probabilities or probability densities, of 
the occurrence of the given values. Similarly to strength, 
the load has also a random variation, so we can 
represent both distributions on the same picture.  
 As it can be seen, the two probability fields present 
an area of interference, which signify that it is possible 
to occur situations in which the load is greater than the 
strength. From here it results a third distribution, the 
probability of the event L ≥ S, which is the conditional 
failure probability, given by: 
 
        (1) 

 
Where  is the probability density of load and  
is the cumulative probability of strength. 
 As an example, using a MathCAD program, we 
drawn up the Load Strength interference diagrams for 
the Bucket Wheel Excavators discussed before.  
 In our study, we consider as load the specific cutting 
energy, which is between 0,08 and  0,4  kWh/m3 for  
lignite,  with a larger spread of values, respectively  
0.18 and 0,2  kWh/ m3 for overburden rock, with 
narrower spread.  
 As strength, the nominal (available) value of the 
excavator’s specific energy (ratio of nominal power in 
kW to nominal excavating capacity in m3/hour)  has 
been considered, as 0.35 kWh/m3, with a normally 
distributed variability, due to variability of working 
conditions.  
 With these values, the Load-Strength interference 
diagrams were drawn up for the two cases, presented in 

fig. 7 for overburden and fig.8 for lignite.  
 As it can be noticed, the degree of non-reliability is 
greater for the excavator operating in lignite, about 
15%, then for the excavator working in overburden, 
where is practically zero. 

 
Fig. 7. The L-S interference charts for the excavator 
working in overburden rock (Specific energy 
consumption in 105 kWh/m3  on x axis) 

  

 
Fig. 8. . The L-S interference charts for the excavator 
working in lignite  (Specific energy consumption in 105 
kWh/ m3 on x axis) 

 
 4. PERFORMANCE OPTIMIZATION MODEL 
FOR WINNING MACHINE USING NEURAL 
NETWORKS  
 
Operational parameters of winning machines are 
strongly influenced by the random variations of strength 
and energetic characteristics of coal, respectively the 
specific resistance to cutting and specific energetic 
consumption at breaking.  

Due to the variation of these parameters, rate of 
feed, torque of the drum axle and the advancement force 
vary randomly around an average value, which can be 
suddenly modified by rapid change, for example when 
crossing a hard rock intrusion.  

Using special transducers and processing equipment, 
it is possible to record the instantaneous values of 
torque, of the hauling (advancement) force and of the 
rate of feed.  

Based on the above mentioned parameters, it is 
useful and possible to derive the values of the specific 
cutting resistance, (A) and of the specific energy 
consumption,  (Es) in order to forecast, for other 
conditions, expected values of the feed rate, (va), which 
influence the cutting capacity, of the torque on the axle, 
(Mt), which is limited by the power of the engine and of 
the advancement force, (Fa), which is also limited by the 
power of the hauling system.  

Starting from simultaneously recorded values of the 
above mentioned, using a perceptron neural network 
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(Fig.9.), the values Fa, Mt and  va have been used, 
regarded as inputs for instructing the network, with the 
calculated values of Es and A, using dependency 
relations known in the technical literature.  

According to the resulting structure of the neural 
network, the values for Mt, Fa and va have been 
determined for discrete values of Es and A.  

According to these values the dependencies between 
the mentioned parameters have been mapped out, as in 
figs. 10, 11, 12, 13, 14, 15. 

In the mentioned diagrams, the hauling force Fa has 
been considered as an independent  parameter. 

It could be possible to embed such a processing unit 
in the control loop of a shearer loader, in order to 
adaptively optimize the feed rate and/or the energy 
consumption.  

 
5. LONGWALL SUPPORT EFFECTIVENESS 

ASSESSMENT USING FUZZY SETS 
 

The adaptation of powered roof support, from 
constructive and functional point of view to the 
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Fig. 15. Dependency of Es (Mt, va) for Fa = 700 kN 
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Fig. 14 . Dependency of A (Mt, va) for Fa = 700 kN 
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Fig. 13. Dependency of Es (Mt, va) for Fa = 500 
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Fig. 12. Dependency of  A (Mt, va) for Fa = 500 
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Fig. 11. Dependency of Es (Mt, va) for Fa = 200 kN 

 

 

 

Fig.9. Inputs and outputs of the neural network 
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Fig. 10. Dependency of  A (Mt, va) Fa = 200 kN 
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variation and specificity of geologic mining conditions, 
is a very actual and important research subject.  

In past decades, the coal extraction technology 
evolved dramatically. However, the problem of the 
interdependence between geo/mining conditions and 
constructive and functional features of powered support 
represents a challenge which faces the specialists with 
huge problems to be solved and engineering sciences 
offer new tools for an interdisciplinary approach in this 
work, in order to provide to manufacturers, designers 
and users scientifically founded solutions.   

It is difficult to obtain closed form solutions from 
deterministic models, historical  statistical data presents 
a large variability, so deriving support-surrounding 
rocks system’s behavior is very difficult to be described 
using classical approaches.  

In the present section  we try to use FUZZY 
modeling to obtain some qualitative results.  

The support characteristics are not fix (crisp) values, 
they belongs to a value range. The parameters 
describing geo mining conditions also are difficult to be 
quantified, their approximation being expressed by non 
digital attributes.  

Hence, the decision to select a shield in order to test 
its  compliance to given working conditions and 
technological factors  can be made using FUZZY rules.   

Starting from the idea of ground response curves. 
presented in [6], we have delivered an IT system based 
on FUZZY logic. 

In Fig. 16, the ground response curves for supports 

with the four combination of the stiffness and yield 
load, with roofs of different stability are depicted.  

The curves 1 to 4  in Fig. 16 represent the 
dependence between the roof convergence and the 
support load, for decreasing roof stabilities. 

 The shape of curves are determined by the empiric 
observation stating that  at constant support load the 
convergence increases, when stability decreases  and to 
maintain a given allowable convergence the support 
load must be higher. 

The slope lines continued by horizontal lines 
represents the support’s loading characteristic, as the 
stiffness is greater, as the line is more vertical.  

The elevation of the horizontal segment represents 
the value of the yield load of the support.  

The setting load is represented by the start point of 
slope line on the vertical axis. 

The intersection between the support characteristic 
line and the roof characteristic curve gives the 
functioning point of the support-roof system at the 
equilibrium 

The target for a proper support of the roof is to 
maintain this point on the inclined line segment, for this 
reason the external control parameters are the setting 
load, the yield load and the stiffness of the support 
shield.   

The roof stability, described by [7] is another metric 
which can be used  as output for the devised FUZZY 
model.   

In this approach, the curves represent the load-
convergence dependence of the whole support- roof 
system. Different curves represent the system’s 
behavior in different operating stages of the face.  

Between these three input parameters, i.e. the setting 
pressure (resistance), the yield pressure (resistance) and 
stiffness and the output parameters, i.e. stability and 
convergence, the field observations and the above 
common sense findings allow to derive inferences for 
FUZZY rules.  

 Based on the above considerations, we developed 
two FUZZY models. The FUZZY models has been 
developed using MATLAB’s FUZZY toolbox  

 In the first model developed, we used inference 
rules for deriving the support load-convergence curve 
respectively the roof load-convergence curve. The 
output graphs are presented in Figs. 17 - 18.  

In the second model, more sophisticated, we used 
stiffness, stability, yield and setting load as input 

 

Fig.16.  Ground response curves conceptual model 

 
Fig. 17. Load-convergence curve of the support 

 

 
Fig. 18. Load-convergence curve of the roof 
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variables and convergence as output variable, and we 
obtained the 3D  graphs presented in Figs.  19-21.  

Interpreting the results starting from these spatial 
graphs may offer some practical rules about prior 
selection of supports, using statements from historical 
data and simple factual reasoning.  

The algorithm implemented in an expert system, 
may lead to a progressive optimization of existing 
support operation or, in the selection process –
eventually by scoring and comparison – of the 
appropriate support parameters.  
 
 6. CONCLUSION  

 
In order to find out new methods for the quick 
assessment of large production systems used in coal 
mining, we presented and tested by real world examples 
two alternative–complementary methods of reliability 
analysis, namely the Monte Carlo simulation and the 

Load Strength Interference methods.   
 
 We proposed and demonstrated the application of 
these  methods to the analysis of the safety of operation 
of mining production systems    
 The application of neural nets to derive the 
dependencies between the working parameters of a 
shearer-loader and the cuttability metrics of the rock has 
been also treated .  
 The use of FUZZY sets to describe the operation of 
the roof support, starting from a qualitative conceptual 
model of  ground response curves is presented.  

The results by using this method  may lead to a 
progressive optimization of existing support operation 
or, in the selection process –eventually by scoring and 
comparison – of the appropriate support parameters.  
  The results obtained are convergent and offer the 
opportunity for further developments of their 
application.  
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Fig. 19. Setting load as a function of stiffness and 

yield load 

 
Fig.20. Setting load as a function of stability 

and yield load 
 

 
 

Fig.21. Setting load as a function of stability and 
stiffness 
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