MODELING AND SIMULATION OF A BIOENERGY SYSTEM FOR CAMPUS OF THE UNIVERSITY OF PETROSANI

Adrian Nicolae Dinoiu, Ph.D. Student Eng., University of Petrosani Emil Pop, Ph.D. Professor Eng., University of Petrosani Ioana Camelia Barbu, Ph.D. Lecturer Eng., University of Petrosani

ABSTRACT: Biomass energy systems have been and will be an important part of the production of electricity or heat. We modeled and simulated a biomass energy system, as well, the analysis of implementing issues for a biomass energy system. The simulation was performed for two student residences (3 and 4) in the campus of the University of Petrosani, located near the Parang Mountains. We wanted to evaluate the feasibility of installing a biomass system, combined with the present one of natural gas used for periods when it reaches the peak load. **KEYWORD:** Biomass, bioenergy system, Petrosani, Parang, modeling, simulation, campus, Retscreen, university.

1. INTRODUCTION

Human emissions of carbon dioxide in the atmosphere exceed natural fluctuations and these activities have altered seriously the global carbon cycle.^[4] Changes in the amount of atmospheric CO₂ have significantly changes for the weather patterns and indirectly influence of the ocean chemistry.^[2]

Biomass systems for energy production may increase economic development without contributing to the greenhouse effect, because biomass is a net emitter of CO_2 in the atmosphere when it is produced and used sustainably.^[9] The use of biomass in larger commercial systems based on sustainable resources and waste can help the improve of the natural resource management.

2. BIOMASS

Energy from biomass can be a sustainable source, environmentally friendly and economical. Biomass means any organic material derived from vegetable and which is participating in the carbon cycle in the nature such as plants, trees and crops which are completed their life cycle. Using biomass as a primary source of electricity, means to interrupt the normal carbon cycle in nature by accelerating its development, extracting in a usable form, the energy that would otherwise be released into the environment by oxidation. This principle tells us that "burning" biomass to produce energy does not pollute the atmosphere because the carbon dioxide is absorbed by plants.

Biomass is the most important source to increase energy production based on renewable sources. Biomass energy is the conversion of biomass into useful forms of energy such as heat, electricity and liquid fuels. Biomass absorbs solar energy through photosynthesis. The main sources of biomass are: dedicated energy crops, crop residues generated in the processing of foods, industry, consumer waste, demolition debris and municipal waste.^[6] Through conversion processes, biomass is converted into liquid, gaseous or solid biofuels.

Biomass is a renewable energy source, sustainable and relatively environmentally friendly, is not uncertainty of supply of imported fuels, it reduce consumption of fossil fuels and biomass fuels have a sulfur content not negligible contribute to sulfur dioxide emissions. Burning agricultural and forestry residues and municipal solid waste for energy production is an efficient use of waste which significantly reduces waste disposal problem, especially in municipal areas. Biomass provides a clean source of renewable energy that could improve the environment, economy and energy security.

3. MODELING AND SIMULATION OF A BIOMASS SYSTEM

RETScreen [®] International^[10] is a standardized software and integrated for analysis of renewable energy projects. It can be used to evaluate the energy production, life circuit costs and the reduce emissions of greenhouse gases for different renewable energy technologies.

The simulation was performed for two dormitories (3 and 4) on the campus of the University of Petrosani. Petrosani is situated near Parang Mountain. The climatic conditions of chosen location can be seen in Figure 1.

We wanted to evaluate the feasibility of installing a biomass system, combined with the current with natural gas used for periods when the load reaches a peak.

Climate data location	Petrosani						
	Unit	Climate data location	Project location				
Latitude	°N	45,4	45,4				
Longitude	۴E	23,4	23,4				
Elevation	m	599	599				
Heating design temperature	°C	-11,3					
Cooling design temperature	°C	27,1					
Earth temperature amplitude	°C	21,0					

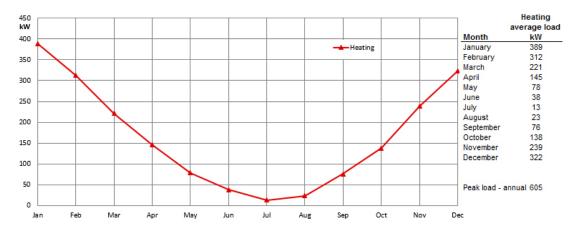
			Daily solar					
	Air	Relative	radiation -	Atmospheric		Earth	Heating	Cooling
Month	temperature	humidity	horizontal	pressure	Wind speed	temperature	degree-days	degree-days
	°C	%	kWh/m²/d	kPa	m/s	°C	°C-d	°C-d
January	-1,8	87,7%	1,46	96,0	0,6	-3,8	614	0
February	-0,8	83,6%	2,27	95,8	0,9	-2,4	526	0
March	2,9	80,0%	3,32	95,7	1,3	3,3	468	0
April	8,1	81,2%	4,01	95,3	1,2	10,1	297	0
May	13,0	82,3%	4,94	95,5	1,2	16,0	155	93
June	16,0	83,3%	5,40	95,5	1,2	19,3	60	180
July	17,8	81,5%	5,55	95,6	1,1	21,9	6	242
August	17,2	81,6%	5,07	95,6	1,0	21,9	25	223
Septembe	13,1	83,6%	3,62	95,7	0,9	16,6	147	93
October	8,5	84,6%	2,48	96,0	1,0	10,1	295	0
November	2,6	85,9%	1,51	95,9	0,8	2,9	462	0
December	-0,9	90,4%	1,16	96,0	0,5	-2,6	586	0
Annual	8,0	83,8%	3,41	95,7	1,0	9,5	3.641	831
Measured	at m				10,0	0,0		

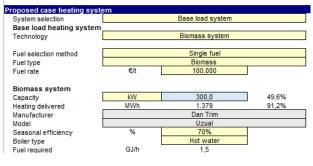
Fig. 1. Climatic conditions of the location

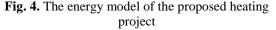
RETScreen Load & Network Design - Heating project

Heating project	Unit		
Base case heating system	Single bui	lding - multiple zones - space h	eating
			Building zones
		_	1 2
Heated floor area per building zone	m²	9.000	6.200 2.800
Fuel type			Natural gas - m ³ Natural gas - m ³
Seasonal efficiency	%	-	65% 65%
Heating load calculation			
Heating load for building zone	W/m ²	-	75 50
Domestic hot water heating base demand	%	10%	
Total heating	MWh	1.512	1.162 350
Total peak heating load	kW	605	465 140
Fuel consumption - unit		-	m ³ m ³
Fuel consumption - annual		-	189.466 57.043
Fuel rate - unit		-	€/m ³ €/m ³
Fuel rate		-	0,350 0,350
Fuel cost		€ 86.278	€ 66.313 € 19.965
Proposed case energy efficiency measures			
End-use energy efficiency measures	%	0%	0% 0%
Net peak heating load	kW	605	465 140
Net heating	MWh	1.512	1.162 350

Fig. 2. The reference case of heating project




Fig. 3. Proposed case system load characteristics graph


One aspect of this simulation is the importance of improving energy efficiency in buildings and investing in sustainable technologies. It also represents a starting point in the development of other projects with woody biomass heating in the area. Funds for the development of these projects can be obtained from the European Commission, the Ministry of Education or Ministry of Environment.

These two dormitories are part of the same building, so we split it into two parts. The building has 5 floors with a total area of approximately 9000 m² (Figure 2), providing accommodation for about 300 students. The maximum load that we took into account is 605 kW (Figure 3).

In the reference system, the heating is done using a plant operating on natural gas and in the proposed system, the heating will be using a wood biomass power plant.

RETScreen Energy Model - Heating project

The biomass heating system is based on a boiler with an output of 300 kW (Figure 5a) to meet the basic needs of the heating of the two dormitories. The boiler is produced by DanTrim Ltd. and it can be supplied with different woody biomass, such as sawdust, pellets, wood chips.

A reserve system based on natural gas of 530 kW (Figure 5b) is used to cover periods when load peaks are recorded, or in case of failure of the main system. As shown in Figure 3, the main system can meet the heating load for most of the year, without the secondary. For the winter months and coldest days, but mostly to have energy security, we need the both systems.

The biomass that will supply the energy system will be stored in a silo built specifically for this task and will be supplied as needed. Being a mountain area, logging is one of the economic activities in the area. There are sawmills and factories dealing with wood and using only some parts of the wood collected from the forest. Waste wood can be obtained from them and used for this biomass heating system, even at a very low price.

The amount of wood available can be increased if takes into account the planting of energy crops with short rotation time. If the type of the waste is unknown, it is assumed average heating value and moisture content of about 40%.

RETScreen		x	RETScreen	_		×	
System Technology	Heating Biomass system				Heating Boiler		
Manufacturer Model	Dan Trim Custom designed		Manufacturer Model	A.O. Smith DW-1810			
			Capacity per unit Number of units Capacity		kW	530 1 530	
Fuel type: Saw/sander of	dust, Chips, Pellets		Fuel type: Natur Efficiency: 82 %	-			

Fig. 5. a) Biomass heating system b) Natural gas heating boiler

Proposed case system characteristics	Unit	Estimate	%
Heating			
Base load heating system			
Technology		Biomass system	
Capacity	kW	300,0	49,6%
Heating delivered	MWh	1.379	91,2%
Peak load heating system			
Technology		Boiler	
Fuel type		Natural gas - m ³	
Fuel rate	€/m ³	0,340	
Suggested capacity	kW	305,0	
Capacity	kW	530	87,6%
Heating delivered	MWh	132,9	8,8%
Manufacturer		A.O. Smith	See PDB
Model		DW-1810	1 unit(s)
Seasonal efficiency	%	65%	
Back-up heating system (optional)			
Technology			
Capacity	kW	0,0	

Fig. 6. Proposed case system characteristics

Project costs and savings/ii	ncome sum	mary		Yearly	cash flows		
Initial costs				Year	Pre-tax	After-tax	Cumulative
Feasibility study	3,9%	€	4.000	#	€	€	(
Development	3,9%	€	4.000	0	-20.372	-20.372	-20.372
Engineering	6,9%	€	7.000	1	25.075	25.075	4.703
				2	25.820	25.820	30.523
Heating system	71,1%	€	72.400	3	26.579	26.579	57.102
				4	27.353	27.353	84.455
				5	28.143	28.143	112.598
				6	28.949	28.949	141.547
Balance of system & misc.	14,2%	€	14.460	7	26.325	26.325	167.872
Total initial costs	100,0%	€	101.860	8	30.609	30.609	198.481
				9	31.464	31.464	229.945
				10	32.336	32.336	262.282
				11	45.370	45.370	307.652
Annual costs and debt payn	nents			12	46.278	46.278	353.929
O&M		€	3.960	13	47.203	47.203	401.132
Fuel cost - proposed case		€	45.829	14	44.189	44.189	445.321
Debt payments - 10 yrs		€	12.144	15	49.110	49.110	494.43
Total annual costs		€	61.933	16	50.092	50.092	544.523
				17	51.094	51.094	595.617
Periodic costs (credits)				18	52.116	52.116	647.733
User-defined - 7 yrs		€	3.000	19	53.158	53.158	700.892
				20	54.221	54.221	755.113
				21	50.759	50.759	805.872
				22	56.412	56.412	862.284
Annual savings and income				23	57.540	57.540	919.824
Fuel cost - base case		€	86.278	24	58.691	58.691	978.515
				25	59.865	59.865	1.038.380
Total annual savings and in	ncome	€	86.278				

Fig. 7. Financial analysis

RETScreen Cost Analysis - Heating project

l costs (credits)	Unit	Quantity		Unit	cost		Am	ount	Relative
asibility study			_						
Feasibility study	cost	1	€		4.000	€		4.000	
Subtotal:						€		4.000	
velopment									
Development	cost	1	€		4.000	€		4.000	
Subtotal:						€		4.000	
gineering									
Engineering	cost	1	€		7.000	€		7.000	
Subtotal:						€		7.000	
ating system			_						
Base load - Biomass system	kW	300,0	€		200	€		60.000	
Peak load - Boiler	kW	530,0				€		-	
Energy efficiency measures	project					€		-	
Appliances & equipment - credit	credit	126	€		100	€		(12.600)	
Spare parts	cost	100	€		250	€		25.000	
Subtotal:						€		72.400	7
lance of system & miscellane	ous								
Spare parts	%					€		-	
Transportation	project	1	€		1.000	€		1.000	
Training & commissioning	p-d	20	€		60	€		1.200	
User-defined	cost	50	€		60	€		3.000	
Contingencies	%	10,0%	€		92,600	€		9.260	
Interest during construction	0.00%	6 month(s)	€			€		-	
Subtotal:			_			€		14.460	1
initial costs						€		101.860	10
Annual costs (credits	s) Unit	Quant	itu		Unit cost			Amount	
O&M	<i>sj</i> 0111	Quant	лцу		unit cost			Amount	
Parts & labour	projec	t 100		€		20	€	2.000	
User-defined	cost			€	4	600	€	1.600	
Contingencies	<u> </u>	10.09	v.	€		600	l€	360	
Subtotal:	/0	10,0	nul	6	э.	500	€ €	3.960	
	ad as as						e	5.960	,
Fuel cost - propos		04.00		-		240	-	7.005	,
Natural gas Biomass	m³ t	21.66 385		€ €		340 000	€	7.367	
	t	365		e	100,	000	_	38.462	
Subtotal:							€	45.829	,
Appual agvinge	Unit	Quant	it.		Unit cost			Amount	
Annual savings Fuel cost - base ca		Quant	ny		onit cost			Amount	
	se m ³	246.5	00	€	0	350	€	26 370	2
Natural gas	117	240.0	03	e	υ,	330		86.278	
Subtotal:							€	86.278	<u> </u>
		Yea	r		Unit cost		_	Amount	
Periodic costs (credit	ts) Unit						1		
Periodic costs (credit				€	3	000	€	3 000)
Periodic costs (credit User-defined	ts) Unit cost			€	3.	000	€	3.000)

Fig. 8. Cost Analysis

For the financial analysis (Figure 7) and cost analysis (Figure 8), we used the typical financial figures provided by the database software: an inflation rate of 2%, debt ratio of 80%, debt rate 8%, discount rate of 9% and a debt within 10 years. The heating is presumed to last 25 years.

The cost of energy is expected to grow at the same rate as inflation. The price of wood biomass is estimated at 100 euros/tonne, but for large quantities and for a longer period, it can be negotiated. The cost of natural gas is calculated at 0.34 euro/m³.

Another advantage of such a power system is the use of local labor, use of nearby resources, with benefits for the entire community.

Reduction of greenhouse gas emissions (Figure 9), is also a strong point of this type of heating systems, with positive effects for the whole community. On globally is trying to reduce emissions of greenhouse gases, so that energy projects should take very much into account the emissions analysis. Intensive use of fossil fuels has affected the Earth's atmosphere, and the effects are beginning to see growing sharper.

This analysis can be extended and applied to other dormitories in the university campus, and buildings where teaching activity takes place. Also, the local authorities can benefit from this simulation and can perform similar simulations for the city education units or other public institutions or private. By accessing European funds or national funds having as the starting point this type of simulation can be performed on biomass energy systems or other types of renewable energy, thus lead to substantial savings but also at durable and sustainable development of these projects, the resource management and an increase in revenue.

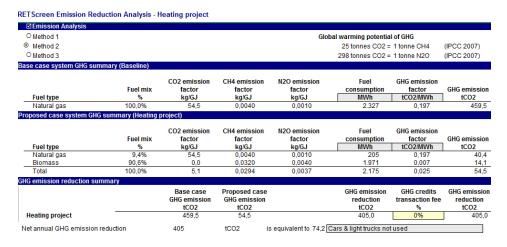


Fig. 9. The emission reduction analysis

4. CONCLUSIONS

In conventional electricity generation the losses associated with the transmission and distribution of electricity are due to the distance from the power plant. Cogeneration and trigeneration units, reduce these losses, because they are located close to the consumers, thereby, increasing the distribution efficiency. Considering the fact that cogeneration or trigeneration unit has a single fuel source and uses waste heat, occurs also a fuel efficiency. An important aspect is the reduction of greenhouse gas emissions, even when is using natural gas instead of coal.

Both in Romania as well as worldwide, it is necessary to develop full waste recovery technologies. Also, an effective analysis of land use and technologies for energy crops in order to not affect the adjacent ecosystems.

For the environmental impact assessment, studies and scenarios are required. Must be used the degraded lands where you can grow energy crops. Studies should include an assessment of the economic impact and the introduction of incentives for producers.

For efficient use of biomass should be considered the availability of the resources, in order to determine access and resources seasonality. Geographical factors such as weather conditions, indicates the temperature and water availability in each area and if this area may be covered by biomass. Also, the profitability of biomass as an energy source will depend upon the market prices at any time.

Development and exploitation of forest biomass generates an environmental impact through a series of social and economic effects.^[7] The introduction of a species in one location can affect the surrounding flora and fauna. Also, we should not forget some of the main objectives of renewable energy, reduce global warming and CO₂ emissions to the atmosphere by burning fossil fuels. Effect on soil nutrients is an important aspect, which may question the sustainability of this type of exploitation.^[8]

A well-fitting legal framework to improve forest management, promoting bio-energy system and state of sustainability criteria and durability.

Biomass in the form of solid and gaseous fuels continue to be the primary source for heat produced from renewable sources. In Europe, biomass is being used even more in district heating systems. Another increasing trend is the use of biomethane, which is obtained by purification of biogas, which can be injected directly into the gas grid and used to produce electricity, heat and fuel.

Biomass present challenges are the development of biomass conversion technologies and research into the effects of these processes and reduce of production costs and an increase in efficiency.

5. REFERENCES

[1] **Barbu I. C, Pop E., Leba M.** - Microsisteme energetice durabile regenerative, Editura Didactica si pedagogica, Bucuresti, 2009

[2] **Crowley T. J.** - Causes of Climate Change Over the Past 1000 Years, Science 289 (5477), ISSN 00368075, 2000

[3] **Dinoiu A., Barbu C., Pop M.** - Modelling and Simulation of Wind Turbines in Southern Carpathians, Proceedings of 7th WSEAS International Conference on Renewable Energy Sources (RES '13), April 2013, Kuala Lumpur, Malaysia, ISSN 2227-4359

[4] Falkowski P. et al. - The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System, Science 290 (5490), 2000

[5] Jitea C., Dinoiu A., Barbu C. - Renewable energy the sustainable rehabilitation of areas affected by unprofitable mining, SESAM 2013, October 2013, Sibiu, Romania, ISSN 1843 – 6226

[6] **Rathore N.S., Panwar N.L.** - *Renewable Energy Sources for Sustainable Development, New India Publishing, 2007*

[7] **Zobaa A. F., Ramesh C. B.** - Handbook of Renewable Energy Technology, World Scientific Publishing Company, 2011

[8] www.biomassenergycentre.org.uk

[9] www.discovery.org.in/PDF_Files/ds_20121203.pdf

[10] www.retscreen.net