

 Annals of the University of Petroşani, Economics, 12(4), 2012, 177-184 177

EXTENDED NETWORK FOR BACKPROPAGATION
ALGORITHM

MIRCEA PETRINI *

ABSTACT: This paper presents the backpropagation algorithm based on an extended
network approach in which the algorithm reduces to a graph labeling problem. This method is
not only more general than the usual analytical derivations, which handle only the case of
special network topologies, but also much easier to follow. It also shows how the algorithm can
be efficiently implemented in computing systems in which only local information can be
transported through the network.

KEYWORDS: Artificial Neural Network (ANN); backpropagation; extended
network; feed-forward computation; training pattern.

JEL CLASSIFICATION: C

1. BACKPROPAGATION ALGORITHM

 The backpropagation algorithm used in artificial neural network (ANN) looks
for the minimum of the error function in weight space using the method of gradient
descent. The combination of weights which minimizes the error function is considered
to be a solution of the learning problem. Since this method requires computation of the
gradient of the error function at each iteration step, we must guarantee the continuity
and differentiability of the error function.
 Obviously we have to use a kind of activation function other than the step
function used in perceptrons, because the composite function produced by
interconnected perceptrons is discontinuous, and therefore the error function too. One
of the more popular activation functions for backpropagation networks is the sigmoid.

* Lecturer, University of Petroşani, Romania, petrini_mircea@yahoo.com

178 Petrini, M.

2. EXTENDED NETWORK

We will consider a network with n input sites, k hidden, and m output units.

The weight between input site i and hidden unit j will be called . The weight

between hidden unit i and output unit j will be called . The bias of each unit is
implemented as the weight of an additional edge. Input vectors are thus extended with
a 1 component, and the same is done with the output vector from the hidden layer.
Figure 1 shows how this is done. The weight between the constant 1 and the hidden

unit j is called and the weight between the constant 1 and the output unit j is

denoted by .

Figure 1. Notation for the three-layered network

There are weights between input sites and hidden units and

between hidden and output units. Let denote the matrix with

component at the i row and the j column. Similarly let denote the

matrix with components . We use an overlined notation to emphasize that the last
row of both matrices corresponds to the biases of the computing units. The matrix of
weights without this last row will be needed in the backpropagation step. The n-
dimensional input vector is extended, transforming it to

the excitation of the j hidden unit is given by

 Extended Network for Backpropagation Algorithm 179

 The activation function is a sigmoid and the output of this unit is thus

 The excitation of all units in the hidden layer can be computed with the vector-
matrix multiplication . The vector whose components are the outputs of the
hidden units is given by

using the convention of applying the sigmoid to each component of the argument
vector. The excitation of the units in the output layer is computed using the extended
vector . The output of the network is the m-dimensional vector

, where

These formulas can be generalized for any number of layers and allow direct
computation of the flow of information in the network with simple matrix operations.

3. THE ALGORITHM

 Figure 2 shows the extended network for computation of the error function. In
order to simplify the discussion we deal with a single input-output pair (o, t) and
generalize later to p training examples. The network has been extended with an
additional layer of units. The right sides compute the quadratic deviation or the i

component of the output vector and the left sides store . Each output unit i in
the original network computes the sigmoid s and produces the output . Addition of
the quadratic deviations gives the error E. The error function for p input-output
examples can be computed by creating p networks like the one shown, one for each
training pair, and adding the outputs of all of them to produce the total error of the
training set.

After choosing the weights of the network randomly, the backpropagation
algorithm is used to compute the necessary corrections. The algorithm can be
decomposed in the following four steps: i) Feed-forward computation; ii)
Backpropagation to the output layer; iii) Backpropagation to the hidden layer; iv)
Weight updates.

The algorithm is stopped when the value of the error function has become
sufficiently small.
 i) First step: feed-forward computation. The vector o is presented to the
network. The vectors and are computed and stored. The evaluated derivatives
of the activation functions are also stored at each unit.
 ii) Second step: backpropagation to the output layer. We are looking for the

first set of partial derivatives . The backpropagation path from the output of the
network up to the output unit j is shown in the B-diagram of figure 3.

180 Petrini, M.

Figure 2. Extended multilayer network for the computation of E

Figure 3. Backpropagation path up to output unit j

From this path we can collect by simple inspection all the multiplicative terms

which define the backpropagated error . Therefore

and the partial derivative we are looking for is

 Extended Network for Backpropagation Algorithm 181

 Remember that for this last step we consider the weight to be a variable
and its input a constant.

 iii) Third step: backpropagation to the hidden layer. Now we want to

compute the partial derivatives . Each unit j in the hidden layer is connected to

each unit q in the output layer with an edge of weight , for q = 1,...,m. The
backpropagated error up to unit j in the hidden layer must be computed taking into
account all possible backward paths, as shown in figure 4.

Figure 4. All paths up to input site i

The backpropagated error is then

 Therefore the partial derivative we are looking for is

182 Petrini, M.

The backpropagated error can be computed in the same way for any number of
hidden layers and the expression for the partial derivatives of E keeps the same analytic
form.

 iv) Fourth step: weight updates. After computing all partial derivatives the
network weights are updated in the negative gradient direction. A learning constant
defines the step length of the correction. The corrections for the weights are given by

and

where we use the convention that . It is very important to make the
corrections to the weights only after the backpropagated error has been computed for
all units in the network. Otherwise the corrections become intertwined with the
backpropagation of the error and the computed corrections do not correspond any more
to the negative gradient direction.

4. TRAINING PATTERN

 In the case of p>1 input-output patterns, an extended network is used to
compute the error function for each of them separately. The weight corrections are
computed for each pattern and so we get, for example, for weight the corrections

The necessary update in the gradient direction is then

We speak of batch or off-line updates when the weight corrections are made in
this way. Often, however, the weight updates are made sequentially after each pattern
presentation (this is called on-line training).

In this case the corrections do not exactly follow the negative gradient
direction, but if the training patterns are selected randomly the search direction
oscillates around the exact gradient direction and, on average, the algorithm
implements a form of descent in the error function.

The rationale for using on-line training is that adding some noise to the
gradient direction can help to avoid falling into shallow local minima of the error
function. Also, when the training set consists of thousands of training patterns, it is
very expensive to compute the exact gradient direction since each epoch (one round of
presentation of all patterns to the network) consists of many feed-forward passes and
on-line training becomes more efficient.

 Extended Network for Backpropagation Algorithm 183

5. ERROR DURING TRAINING

 Figure 5 shows the evolution of the total error during training of a network of
three computing units.

After 600 iterations the algorithm found a solution to the learning problem. In
the figure the error falls fast at the beginning and end of training. Between these two
zones lies a region in which the error function seems to be almost flat and where
progress is slow. This corresponds to a region which would be totally flat if step
functions were used as activation functions of the units. Now, using the sigmoid, this
region presents a small slope in the direction of the global minimum.

Figure 5. Error function for 600 iterations of backpropagation

6. CONCLUSIONS

 The Back-propagation Neural Network (BPNN) is a supervised learning neural
network model highly applied in different engineering fields around the globe.
Although it is widely implemented in the most practical ANN applications and
performed relatively well, it is suffering from a problem of slow convergence and
convergence to local minima. This makes Artificial Neural Network’s application very
challenging when dealing with large problems.

One of the lessons learned over the past years is that significant improvements
in the approximation capabilities of neural networks will only be obtained through the
use of modularized networks. In the future, more complex learning algorithms will deal
not only with the problem of determining the network parameters, but also with the
problem of adapting the network topology.

184 Petrini, M.

REFERENCES:

[1]. Albrecht, R.F.; Reeves, C.R.; Steele, N.C. (1993) Artificial Neural Nets and Genetic

Algorithms, Springer-Verlag, Vienna
[2]. Kosbatwar, S.P.; Pathan, S.K. (2012) Pattern Association for character recognition by

Back-Propagation algorithm using Neural Network approach, (IJCSES) Vol.3, No.1,
February

[3]. Rajapandian, J.V.V.; Gunaseeli, N. (2007) Modified Standard Backpropagation
Algorithm With Optimum Initialization For Feedforward Neural Networks” JISE, GA,
USA, ISSN:1934-9955, vol.1, no.3

[4]. Rehman, M.Z.; Nawi, N.M.; Ghazali, M.I. (2011) Noise-Induced Hearing Loss (NIHL)
Prediction in Humans Using a Modified Back Propagation Neural Network, in: 2nd
International Conference on Science Engineering and Technology, pp. 185--189

[5]. Schiffmann, W.; Joost, M.; Werner, R. (1933) Comparison of Optimized
Backpropagation Algorithms, in: M. Verleysen (ed.), European Symposium on Artificial
Neural Networks, Brussels, pp. 97–104

[6]. Zweiri, Y.H.; Seneviratne, L.D.; Althoefer, K. (2005) Stability Analysis of a Three-term
Back-propagation Algorithm, J. Neural Networks. 18, 1341-1347

