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ABSTACT: This paper presents the backpropagation algorithm based on an extended 
network approach in which the algorithm reduces to a graph labeling problem. This method is 
not only more general than the usual analytical derivations, which handle only the case of 
special network topologies, but also much easier to follow. It also shows how the algorithm can 
be efficiently implemented in computing systems in which only local information can be 
transported through the network. 
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1. BACKPROPAGATION ALGORITHM 
 
 The backpropagation algorithm used in artificial neural network (ANN) looks 
for the minimum of the error function in weight space using the method of gradient 
descent. The combination of weights which minimizes the error function is considered 
to be a solution of the learning problem. Since this method requires computation of the 
gradient of the error function at each iteration step, we must guarantee the continuity 
and differentiability of the error function. 
 Obviously we have to use a kind of activation function other than the step 
function used in perceptrons, because the composite function produced by 
interconnected perceptrons is discontinuous, and therefore the error function too. One 
of the more popular activation functions for backpropagation networks is the sigmoid. 
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2. EXTENDED NETWORK 

 
We will consider a network with n input sites, k hidden, and m output units. 

The weight between input site i and hidden unit j will be called . The weight 

between hidden unit i and output unit j will be called . The bias of each unit is 
implemented as the weight of an additional edge. Input vectors are thus extended with 
a 1 component, and the same is done with the output vector from the hidden layer. 
Figure 1 shows how this is done. The weight between the constant 1 and the hidden 

unit j is called  and the weight between the constant 1 and the output unit j is 

denoted by . 
 

 
 

Figure 1. Notation for the three-layered network 
 
There are  weights between input sites and hidden units and 

between hidden and output units. Let  denote the  matrix with 

component  at the i row and the j column. Similarly let  denote the  

matrix with components . We use an overlined notation to emphasize that the last 
row of both matrices corresponds to the biases of the computing units. The matrix of 
weights without this last row will be needed in the backpropagation step. The n-
dimensional input vector  is extended, transforming it to 

the excitation  of the j hidden unit is given by 
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 The activation function is a sigmoid and the output  of this unit is thus 

 
 The excitation of all units in the hidden layer can be computed with the vector-
matrix multiplication . The vector  whose components are the outputs of the 
hidden units is given by 

 
using the convention of applying the sigmoid to each component of the argument 
vector. The excitation of the units in the output layer is computed using the extended 
vector . The output of the network is the m-dimensional vector 

, where  
 

These formulas can be generalized for any number of layers and allow direct 
computation of the flow of information in the network with simple matrix operations. 
 
3. THE ALGORITHM 
 
 Figure 2 shows the extended network for computation of the error function. In 
order to simplify the discussion we deal with a single input-output pair (o, t) and 
generalize later to p training examples. The network has been extended with an 
additional layer of units. The right sides compute the quadratic deviation  or the i 

component of the output vector and the left sides store . Each output unit i in 
the original network computes the sigmoid s and produces the output . Addition of 
the quadratic deviations gives the error E. The error function for p input-output 
examples can be computed by creating p networks like the one shown, one for each 
training pair, and adding the outputs of all of them to produce the total error of the 
training set. 

After choosing the weights of the network randomly, the backpropagation 
algorithm is used to compute the necessary corrections. The algorithm can be 
decomposed in the following four steps: i) Feed-forward computation; ii) 
Backpropagation to the output layer; iii) Backpropagation to the hidden layer; iv) 
Weight updates. 

The algorithm is stopped when the value of the error function has become 
sufficiently small. 
 i) First step: feed-forward computation. The vector o is presented to the 
network. The vectors  and  are computed and stored. The evaluated derivatives 
of the activation functions are also stored at each unit. 
 ii) Second step: backpropagation to the output layer. We are looking for the 

first set of partial derivatives . The backpropagation path from the output of the 
network up to the output unit j is shown in the B-diagram of figure 3. 
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Figure 2. Extended multilayer network for the computation of E 
 

 
 

Figure 3. Backpropagation path up to output unit j 
 

From this path we can collect by simple inspection all the multiplicative terms 

which define the backpropagated error . Therefore  
 

and the partial derivative we are looking for is  
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 Remember that for this last step we consider the weight  to be a variable 
and its input  a constant. 
 

 iii) Third step: backpropagation to the hidden layer. Now we want to 

compute the partial derivatives . Each unit j in the hidden layer is connected to 

each unit q in the output layer with an edge of weight , for q = 1,...,m. The 
backpropagated error up to unit j in the hidden layer must be computed taking into 
account all possible backward paths, as shown in figure 4.  
 

 
 

Figure 4. All paths up to input site i 
 
The backpropagated error is then 
 

 
 

 Therefore the partial derivative we are looking for is 
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The backpropagated error can be computed in the same way for any number of 
hidden layers and the expression for the partial derivatives of E keeps the same analytic 
form. 

 

 iv) Fourth step: weight updates. After computing all partial derivatives the 
network weights are updated in the negative gradient direction. A learning constant 
defines the step length of the correction. The corrections for the weights are given by 

 

 
and  

 
 

where we use the convention that . It is very important to make the 
corrections to the weights only after the backpropagated error has been computed for 
all units in the network. Otherwise the corrections become intertwined with the 
backpropagation of the error and the computed corrections do not correspond any more 
to the negative gradient direction. 
 
4. TRAINING PATTERN 
 
 In the case of p>1 input-output patterns, an extended network is used to 
compute the error function for each of them separately. The weight corrections are 
computed for each pattern and so we get, for example, for weight  the corrections 
 

 
 
The necessary update in the gradient direction is then 
 

 
 

We speak of batch or off-line updates when the weight corrections are made in 
this way. Often, however, the weight updates are made sequentially after each pattern 
presentation (this is called on-line training).  

In this case the corrections do not exactly follow the negative gradient 
direction, but if the training patterns are selected randomly the search direction 
oscillates around the exact gradient direction and, on average, the algorithm 
implements a form of descent in the error function. 

The rationale for using on-line training is that adding some noise to the 
gradient direction can help to avoid falling into shallow local minima of the error 
function. Also, when the training set consists of thousands of training patterns, it is 
very expensive to compute the exact gradient direction since each epoch (one round of 
presentation of all patterns to the network) consists of many feed-forward passes and 
on-line training becomes more efficient. 
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5. ERROR DURING TRAINING 
 
 Figure 5 shows the evolution of the total error during training of a network of 
three computing units.  

After 600 iterations the algorithm found a solution to the learning problem. In 
the figure the error falls fast at the beginning and end of training. Between these two 
zones lies a region in which the error function seems to be almost flat and where 
progress is slow. This corresponds to a region which would be totally flat if step 
functions were used as activation functions of the units. Now, using the sigmoid, this 
region presents a small slope in the direction of the global minimum. 
 

 
 

Figure 5. Error function for 600 iterations of backpropagation 
 
6. CONCLUSIONS 
 
 The Back-propagation Neural Network (BPNN) is a supervised learning neural 
network model highly applied in different engineering fields around the globe. 
Although it is widely implemented in the most practical ANN applications and 
performed relatively well, it is suffering from a problem of slow convergence and 
convergence to local minima. This makes Artificial Neural Network’s application very 
challenging when dealing with large problems. 

One of the lessons learned over the past years is that significant improvements 
in the approximation capabilities of neural networks will only be obtained through the 
use of modularized networks. In the future, more complex learning algorithms will deal 
not only with the problem of determining the network parameters, but also with the 
problem of adapting the network topology. 
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