

 Annals of the University of Petroşani, Economics, 11(4), 2011, 305-314 305

ISSUES CONCERNING THE USE OF UML DIAGRAMS TO

DEFINE THE UNDERLYING PROCESS MODEL
SIMULATION

MIOARA UDRICĂ, TEODORA VĂTUIU,
ADRIAN GHENCEA *

 ABSTRACT: Diagrams are a graphical representation of the information contained
in a UML model, and are an essential feature of UML modelling. Each UML diagram is
designed to let you view a software system from a different perspective and to varying levels of
abstraction.

 KEY WORDS: unified modelling language; model; process of simulation; diagrams;
static model; dynamic model; functional model; structure; behaviour; system’s cycle of life;
analysis; design; implementation.

 JEL CLASSIFICATION: D83, O32

1. GENERAL CONSIDERATIONS

 Unified Modelling Language (UML) succeeds an important wave of object
oriented methods of analysis and design, used in the late 80's and early 90’s. It is a
unified modelling language, the result of a process of introducing standardization in
object oriented design. It is the starting point in the future development of graphic
languages.

Essential contributions in this field were brought by Grady Booch, Jim
Rumbaugh and Ivar Jacobson. Based on their studies, on November 17, 1997, Object
Management Group (OMG) announced the adoption of UML as a standard modelling
language.

* Ph.D., “Titu Maiorescu” University of Bucharest, Romania, udrica@gmail.com
 Assoc.Prof., Ph.D.,“Titu Maiorescu” University of Bucharest, Romania,
v_teodora@yahoo.com
 Lecturer, Ph.D., “Titu Maiorescu” University of Bucharest, Romania,
adighencea@gmail.com

306 Udrică, M.; Vătuiu, T.; Ghencea, A.

2. ADVANTAGES AND DISADVANTAGES OF UML UTILIZATION

Advantages of UML are:
▪ it is a frame for object oriented analysis, providing:

- different but complementary views of the system which guide the use
of object concepts;

- Several levels of abstraction, that allows the control of the system's
complexity through object solutions.

▪ it is a communication pylon
- graphic notation allows visual expression of an object solution
- formal aspect/appearance of its notation limits ambiguity
- visual features facilitate comparison and evaluation of solutions

▪ it is a formal and standardized language, which:
- gains precision/accuracy
- gains stability
- encourages the use of CASE tools

▪ ensures independence towards the implementation language and the domain
of application

Disadvantages of UML are:
▪ the practice of UML language requires specialized training
▪ it allows the design of models, but it doesn’t specify the process of the

model’s design. It is an iterative and incremental approach guided by the requirements/
needs of the system’s users.

▪ it doesn’t show/ not describe how the soft is developed/to develop the soft,
but it can be used with any process.

The adoption of UML as a standard modeling language brings significant
contributions in achieving complete, concise and intelligible models for real systems.
Models contain abstractions representing the real world as a collection of entities
(objects, instances) and of different connections between them. We can define
constrains, by describing static, dynamic or temporal features of the entities.

The models are tested by the simulation process, viewed as a process of
conducted experimentation in order to establish the level of adequacy in relation to the
initial system.

Some of the shortcomings of the simulation process are:
▪ the support model of the simulation is a simplified one, following a single

purpose. The solution offered is a punctual one, which does not always have a
correspondent in the real system;

▪ the results can’t be transferred to other problems because they are based on
unique factors specific to particular problems.

▪ the results are difficult to interpret due to the fact that they are dependent of
random factors. No matter how powerful the computer is, the optimal solution is
difficult to obtain on a model which has many equations and a significant number of
parameters.

These shortcomings have led to the use of simulation only when the
interactions between components are complex, when random factors have a significant

 Issues Concerning the Use of UML Diagrams to Define the ... 307

influence and a great number of observations regarding data behavior is necessary,
when the problem cannot be solved by using an algorithm or direct experiments. If we
cannot apply direct optimization methods, the optimal solution is enabled by
alternative experiments. We test the values of the different decision variables and
highlight the consequences of some decisions regarding the values of the resulting
variables.

The advantages of the simulation process:
▪ the model on which simulation is based provides a functional form of

expression of the relationship between the phenomena studied. We can therefore test
for unexpressed actions within the model;

▪ ensures a better structuring of the analyzed problem, allows exploration of
the information flow and of operating procedures without interfering in the real system;

▪ uses the cybernetic control system which represents the basis of the decision-
making process in practice;

▪ there are many software packages for the process of simulation;
▪ data used in the design of the model can be real observations (numerical

values) or knowledge. These are translated into algorithms implemented by a computer
system.

These have caused the consideration of simulation as one of the most powerful
tools in the decision-making process. With the recognition of UML as a standard
language for modelling, the process of simulation becomes a technique for
coordinating computer-aided experiments and UML diagrams become universal visual
tools for modelling elements. Each type of diagram shows a certain aspect of the
modelled system: static structure, interactions between objects, physics components of
an application, interactions between users and the system. Together they design a real
world model, viewed from different perspectives and in different ways.

3. ROLE OF UML DIAGRAMS IN BUILDING MODELS UNDERLYING THE
SIMULATION PROCESS

We present below how the UML diagrams participate in the design of models

which represent the basis of the process of simulation.

3.1 Highlighting the role of UML diagrams in system structure and behaviour

The structure of the system is shown in the diagram of classes and the diagram
of objects. They contain classes and relationships between them or objects and
relationships between them, when the behaviour of individual objects require structural
changes. In this case, the structure is further evidenced by collaboration diagrams.

For a class, behaviour simulation means to evidence the possible state and the
events leading to transition from one state to another. This is done by using the state
diagram, which can include the possible constraints emerging during the chaining
state-event-state.

308 Udrică, M.; Vătuiu, T.; Ghencea, A.

In most cases, state changes are determined by events occurring outside the
object but to which it reacts. In case changes have an internal determination, caused by
finishing a proper action of a state, to show the behaviour on define activities diagrams.

If the changes have an internal determination, resulting from the performing or
ending a state's own actions, in order to represent the behaviour one needs to further
define activity diagrams.

In the simulation process, UML can provide information about the
collaboration between structure and behaviour, including in the same diagram activities
and objects (fig.1)

Figure 1.

For the system, the simulation of behaviour means showing the interactions
between classes and objects. This can be realized using three types of diagrams:
collaboration, sequences and activities diagrams.

In the collaboration diagram new links can occur between classes. In the
sequences diagram, for every message, we have to have a correspondent operation in
the destination class, as an appropriate response to the received message. While the
activities diagram describes a case of usage, sequences and collaboration diagrams are

 Issues Concerning the Use of UML Diagrams to Define the ... 309

thought for scenarios of a case of usage, they show classes and their interactions during
a scenario.

For classes with significant dynamic behaviour, the state diagram completes
the case of usage.

3.2. Role of UML diagrams in highlighting system functionality and user
requirements

The specification of the functional requirements of the system is express in
cases of usage, which correspond to actions performed by a particular entity (actor) for
a group of users. By showing cases of usage one can delimit the studied field and
establish cooperation between users and the system’s analysts. The entire functionality
of the system is given by the set of usage cases, grouped in a usage case diagram.

The usage case diagram, which represents the interaction between actors and
usage cases performed by them, represents a functional description of requirements,
structured in relation to one or more actors. At this stage, there are no objects.
Switching to an object structure is done by highlighting the objects which collaborate
to obtain the functionality described by different cases of usage. In this respect, one
follows different, possible scenarios, seen as instances of usage cases. One obtains in
this way objects and sequences diagrams. If the algorithms are complex, one defines
the state diagrams or activities diagrams.

Addressing how the system’s functionality is performed using UML diagrams,
many authors consider that there are two important diagrams: usage case diagram and
classes’ diagram. Usage case diagram expresses the requirements of the users. The
system’s functionality expressed by these requirements is transformed by the system’s
analysts into a model with classes and relations between them. The other diagrams are
subordinated to the classes’ diagram and use elements and tools of oriented object
methodology to complete the classes’ diagram:

▪ State and activities diagrams bring more details regarding the behaviour of
objects within classes;

▪ Collaboration and sequences diagrams detail the interactions between classes;
▪ Activities diagrams bring elements necessary for the implementation of

classes.

3.3 Role of UML diagrams in modelling static, dynamic and functional
 of the real system

Usage case diagrams ensure the correspondence between the user’s
requirements and their representation using abstracts defined and evidenced in different
diagrams. These other diagrams show together a model of the real system, including
static, dynamic and functional views. Grouped under this aspect, diagrams can be at a
given moment a static, dynamic or functional model.

Between models there is a close connection:
- the dynamic model shows the order in which operations defined in the

static model classes are made. Actions from the functional model

310 Udrică, M.; Vătuiu, T.; Ghencea, A.

correspond to the operations from the static model, actors and usage cases
become objects linked by functions from the static model.

- the actors are explicit objects from the objects model, which presents their
structure. Data which flows from or towards the actors corresponds to
operations for objects. For an actor object, the dynamic model shows when
it functions. The dynamic model for these objects is necessary in order to
determine the order of operation.

- the functional model reveals the meaning of the operations and of
constrains from the object model and the significance of actions and
activities from the dynamic model.

In all of the three models we have constrains, showing either relationships
between two objects at the same moment in time, or relations between values of the
same object at different moments in time. The constraints can regard objects, situation
in which they shows partial or total dependence among objects, or they can regard the
states from the dynamic model, or can even highlight restrictions upon operations from
the functional model.

The static dimension regards the system’s structure, its components and the
relationships between them. It is shown with the help of classes and objects diagrams.
These diagrams are modified across the system’s cycle of life, leading finally to a
model of the real system, completely implementable by using object oriented
languages (Java, C++, Visual Basic).

The evidence of components and the relationship between them is not enough
for understanding the system. In order to reveal the dynamic aspects, which depend of
time, we need to define new diagrams: collaboration, state and sequences diagrams.
The collaborative objects show what the object’s states are and how they change and
the events that cause transition in time from one state to another. Moreover, they
highlight the sequences of operations which emerge as an answer to extern stimuli,
without taking into account what the operation does and how it is implemented.

The dynamic dimension of the system is presented using events recognized by
the system. Construction or destruction of objects, the change of the object’s
proprieties, updating the integrity constrains or the change occurred among the
relations between objects are only a few changes generated in time by the appearance
of some events.

The functional aspect refers to data flows that occur among different actors
from the system. It describes what happens in the system and it is represented by the
use case diagram and by activities and components diagrams.

In the situations when different department from the real system have to be
emphasized in the functional model, we can allocate activities from the activity
diagram in department.

For example, an activity diagram showing the process of obtaining payment
(fig.2) can be used to denote some business area where activities take place (fig.3).

 Issues Concerning the Use of UML Diagrams to Define the ... 311

Figure 2.

Figure 3.

312 Udrică, M.; Vătuiu, T.; Ghencea, A.

Stakeholders Goals Existing Business
Processes

Object Model Scenarios
Prototipes

In addition, highlighting the functional aspect involves the identification of
input and output data, the definition of data processing procedures, the identification of
constraints and the specification of the optimization criteria.

4. CONCLUSIONS

The design of an informatics system involves going through several stages.

Every time, we find out the result into a correspondent model. The relationship
between models remains, because we start from the elements of the domain from the
real system and include details necessary for implementation during the design stage;
the same elements are represented, but from different points of view.

Following the system’s cycle of life means to revue, detail and complete the
existing models at a moment in time. This confirms that object oriented models are
developed in spiral.

Defined for new systems, or for allowing the development of existing systems,
usage case diagrams are a common frame during analysis, design and implementation
stage. They are the initial point in establishing the requirements of the design and they
offer the basis for testing and verifying the obtained system.

The models obtained during different stages are represented by different types
of diagrams, which are linked by momentary relations determined by the context. In
successive stages, each model brings a different view on the system, adds new
elements to the previous model, until, finally, we have a general view regarding the
system.

Defining models is not a linear activity, since diagrams defined in one stage
can be modified in another stage. Chaining and interaction of the models takes place
throughout the definition of the system.

- functional requirements of the system with the help of the usage case diagram;
- the outcomes of the analysis stage lead to the creation of an object model and

different scenarios which lead to behaviour diagrams (sequences and
activities);

 Analysis

Figure 4.

 Issues Concerning the Use of UML Diagrams to Define the ... 313

During the design stage one defines new classes, eliminates the classes without
relevance, or emphasizes new relations among the classes. Classes specific for
different usage cases are integrated into a unique structure. One defines state diagrams,
adds details necessary for the implementation into the model of classes (fig.5).

 Design

Figure 5.

Moreover, the same diagram is used with different purposes during the cycle

of life:
- the activities diagram is attached to a usage case in the analysis stage and

serves in the implementation stage to the detailed description of
algorithms. Its components are translated into SQL phrases or in program
instructions, and contribute to the defining of the structure of classes.

- object diagrams are used in the analysis stage for the abstraction of the
model and in the design stage for adding details necessary for the
implementation.

REFERENCES:

[1]. Booch, G.; Jacobson, I.; Rumbaugh, J. (2000) OMG Unified Modeling Language

Specification, Version 1.3 First Edition: March 2000. Retrieved 12 August 2010
[2]. Gabay, J. (2002) Merise vers OMT et UML. InterEdition, Paris.
[3]. Ionita, D. (2010) UML in Business Administration; Journal of Knowledge Management,

Economics and Information Technology; Issue 1; December
[4]. Vatuiu, V.E. (2010) Dimensions and Perspectives for Knowledge Management and

Information; Journal of Knowledge Management, Economics and Information Technology;
Issue 1; December

[5]. Lungu, I. (2005) Metode de dezvoltare a sistemelor informatice, Editura Universitas,
Petrosani

Interface
Specifications

Component
Structure

Scenarios Object Model

Object Model

Data Model Architectural
View

314 Udrică, M.; Vătuiu, T.; Ghencea, A.

[6]. Lungu, I. (2005) Sisteme informatice executive – Editura ASE, Bucuresti
[7]. Stanciu, V. (2003) Proiectarea sistemelor informatice, Editura DualTech, Bucureşti
[8]. Ţarcă, N. (2005) Informatică economică, Editura Universităţii din Oradea, Oradea
[9]. Ţarcă, N. (2008) Bazele utilizării calculatoarelor, Editura Universităţii din Oradea, Oradea
[10]. Udrică, M. si colectiv (2009) UML prin aplicatii, Editura Renaissance, Bucureşti.
[11]. Udrică, M. (2000) Modelare orientată obiect. Editura Cison, Bucureşti
[12]. Vătuiu, T.; Udrică, M. (2010) Sisteme informatice. Eficienţă prin analiză, proiectare,

implementare. Editura Renaissance, Bucureşti
[13]. Vătuiu, T. (2007) Proiectarea sistemelor informatice, vol. 2, curs universitar ID, Editura

Academica Brâncuşi, Tg-Jiu
[14]. Vătuiu, T. (2006) Proiectarea sistemelor informatice: aspecte conceptuale şi

manageriale, Editura Universităţii din Sibiu
[15]. Vătuiu, T. (2001) Procesul de dezvoltare SOFTWARE UML, Sesiunea naţională de

comunicări ştiinţifice, ediţia a-IX-a, Universitatea „Constantin Brâncuşi” , Facultatea de
Ştiinţe Economice, Tg-Jiu, ,Vol.4, Editura „Studii Economice”, ISBN 973-85266-0-4,
pag. 160

[16]. Vătuiu, T. (2001) Analiza orientată pe obiecte în cazul metodologiei UML, Sesiunea
naţională de comunicări ştiinţifice, ediţia a-IX-a, Universitatea „Constantin Brâncuşi” ,
Facultatea de Ştiinţe Economice, Tg-Jiu, ,Vol.4, Editura „Studii Economice”, ISBN 973-
85266-0-4, pag. 164

